Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Retrospective and comparative analysis of 99mTc-Sestamibi breast specific gamma imaging versus mammography, ultrasound, and magnetic resonance imaging for the detection of breast cancer in Chinese women

Authors: Xiuyan Yu, Guoming Hu, Zhigang Zhang, Fuming Qiu, Xuan Shao, Xiaochen Wang, Hongwei Zhan, Yiding Chen, Yongchuan Deng, Jian Huang

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Diagnosing breast cancer during the early stage may be helpful for decreasing cancer-related mortality. In Western developed countries, mammographies have been the gold standard for breast cancer detection. However, Chinese women usually have denser and smaller-sized breasts compared to Caucasian women, which decreases the diagnostic accuracy of mammography. However, breast specific gamma imaging, a type of molecular functional breast imaging, has been used for the accurate diagnosis of breast cancer and is not influenced by breast density. Our objective was to analyze the breast specific gamma imaging (BSGI) diagnostic value for Chinese women.

Methods

During a 2-year period, 357 women were diagnosed and treated at our oncology department and received BSGI in addition to mammography (MMG), ultrasound (US) and magnetic resonance imaging (MRI) for diagnostic assessment. We investigated the sensitivity and specificity of each method of detection and compared the biological profiles of the four imaging methods.

Results

A total of 357 women received a final surgical pathology diagnosis, with 168 malignant diseases (58.5 %) and 119 benign diseases (41.5 %). Of these, 166 underwent the four imaging tests preoperatively. The sensitivity of BSGI was 80.35 and 82.14 % by US, 75.6 % by MMG, and 94.06 % by MRI. Furthermore, the breast cancer diagnosis specificity of BSGI was high (83.19 % vs. 77.31 % vs. 66.39 % vs. 67.69 %, respectively). The BSGI diagnostic sensitivity for mammographic breast density in women was superior to mammography and more sensitive for non-luminal A subtypes (luminal A vs. non-luminal A, 68.63 % vs. 88.30 %).

Conclusions

BSGI may help improve the ability to diagnose early stage breast cancer for Chinese women, particularly for ductal carcinoma in situ (DCIS), mammographic breast density and non-luminal A breast cancer.
Literature
1.
2.
go back to reference Fan L, Strasser-Weippl K, Li J-J, St Louis J, Finkelstein DM, Yu K-D, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–89.CrossRefPubMed Fan L, Strasser-Weippl K, Li J-J, St Louis J, Finkelstein DM, Yu K-D, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–89.CrossRefPubMed
3.
go back to reference Jia M, Zheng R, Zhang S, Zeng H, Zou X, Chen W. Female breast cancer incidence and mortality in 2011. China J Thorac Dis. 2015;7(7):1221–6.PubMed Jia M, Zheng R, Zhang S, Zeng H, Zou X, Chen W. Female breast cancer incidence and mortality in 2011. China J Thorac Dis. 2015;7(7):1221–6.PubMed
4.
go back to reference Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American cancer society. JAMA. 2015;314(15):1599–614.CrossRefPubMedPubMedCentral Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American cancer society. JAMA. 2015;314(15):1599–614.CrossRefPubMedPubMedCentral
5.
go back to reference Pike MC, Pearce CL. Mammographic density, MRI background parenchymal enhancement and breast cancer risk. Ann Oncol. 2013;24(8):viii37–41.PubMedPubMedCentral Pike MC, Pearce CL. Mammographic density, MRI background parenchymal enhancement and breast cancer risk. Ann Oncol. 2013;24(8):viii37–41.PubMedPubMedCentral
6.
go back to reference DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD. Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol. 2012;198(4):W373–380.CrossRefPubMed DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD. Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol. 2012;198(4):W373–380.CrossRefPubMed
7.
go back to reference Del Vecchio S, Salvatore M. 99mTc-MIBI in the evaluation of breast cancer biology. Eur J Nucl Med Mol Imaging. 2004;31(S1):S88–96.CrossRefPubMed Del Vecchio S, Salvatore M. 99mTc-MIBI in the evaluation of breast cancer biology. Eur J Nucl Med Mol Imaging. 2004;31(S1):S88–96.CrossRefPubMed
8.
go back to reference Jones EA, Phan TD, Blanchard DA, Miley A. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera. J Nucl Med Technol. 2009;37(4):201–5.CrossRefPubMed Jones EA, Phan TD, Blanchard DA, Miley A. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera. J Nucl Med Technol. 2009;37(4):201–5.CrossRefPubMed
9.
go back to reference Bekis R, Degirmenci B, Aydin A, Ozdogan O, Canda T, Durak H. Correlation between 99mTc-MIBI uptake and angiogenesis in MIBI-positive breast lesions. Nucl Med Biol. 2005;32(5):465–72.CrossRefPubMed Bekis R, Degirmenci B, Aydin A, Ozdogan O, Canda T, Durak H. Correlation between 99mTc-MIBI uptake and angiogenesis in MIBI-positive breast lesions. Nucl Med Biol. 2005;32(5):465–72.CrossRefPubMed
10.
go back to reference Weiss A, Anderson JE, Chang DC. Comparing the national surgical quality improvement program with the nationwide inpatient sample database. JAMA surg. 2015;150(8):815–6.CrossRefPubMed Weiss A, Anderson JE, Chang DC. Comparing the national surgical quality improvement program with the nationwide inpatient sample database. JAMA surg. 2015;150(8):815–6.CrossRefPubMed
11.
go back to reference Sun Y, Wei W, Yang HW, Liu JL. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(3):450–63.CrossRefPubMed Sun Y, Wei W, Yang HW, Liu JL. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(3):450–63.CrossRefPubMed
12.
go back to reference DA Bluemke GC, Chen MH, DeAngelis GA, DeBruhl N, Harms S, Heywang-Köbrunner SH, et al. Magnetic resonance imaging of the breast prior to biopsy. JAMA. 2004;292(22):2735–42.CrossRefPubMed DA Bluemke GC, Chen MH, DeAngelis GA, DeBruhl N, Harms S, Heywang-Köbrunner SH, et al. Magnetic resonance imaging of the breast prior to biopsy. JAMA. 2004;292(22):2735–42.CrossRefPubMed
13.
go back to reference Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L, Weigert J, et al. SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol. 2010;38(4):219–24.CrossRefPubMed Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L, Weigert J, et al. SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol. 2010;38(4):219–24.CrossRefPubMed
14.
go back to reference Gradishar WJAB, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, et al. Breast cancer version 2.2015. J Natl Compr Canc Netw. 2015;13(4):448–75.PubMed Gradishar WJAB, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, et al. Breast cancer version 2.2015. J Natl Compr Canc Netw. 2015;13(4):448–75.PubMed
15.
go back to reference Tan H, Jiang L, Gu Y, Xiu Y, Han L, Wu P, Zhang H, Shi H. Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99m-sestamibi in detecting primary breast cancer. Ann Nucl Med. 2014;28(1):17–24.CrossRefPubMed Tan H, Jiang L, Gu Y, Xiu Y, Han L, Wu P, Zhang H, Shi H. Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99m-sestamibi in detecting primary breast cancer. Ann Nucl Med. 2014;28(1):17–24.CrossRefPubMed
16.
go back to reference Tadwalkar RV, Rapelyea JA, Torrente J, Rechtman LR, Teal CB, McSwain AP, et al. Breast-specific gamma imaging as an adjunct modality for the diagnosis of invasive breast cancer with correlation to tumour size and grade. Br J Radiol. 2012;85(1014):e212–216.CrossRefPubMedPubMedCentral Tadwalkar RV, Rapelyea JA, Torrente J, Rechtman LR, Teal CB, McSwain AP, et al. Breast-specific gamma imaging as an adjunct modality for the diagnosis of invasive breast cancer with correlation to tumour size and grade. Br J Radiol. 2012;85(1014):e212–216.CrossRefPubMedPubMedCentral
17.
go back to reference Kessler R, Sutcliffe JB, Bell L, Bradley YC, Anderson S, Banks KP. Negative predictive value of breast-specific gamma imaging in low suspicion breast lesions: a potential means for reducing benign biopsies. Breast J. 2011;17(3):319–21.CrossRefPubMed Kessler R, Sutcliffe JB, Bell L, Bradley YC, Anderson S, Banks KP. Negative predictive value of breast-specific gamma imaging in low suspicion breast lesions: a potential means for reducing benign biopsies. Breast J. 2011;17(3):319–21.CrossRefPubMed
18.
go back to reference Meissnitzer T, Seymer A, Keinrath P, Holzmannhofer J, Pirich C, Hergan K, et al. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br J Radiol. 2015;88(1051):20150147.CrossRefPubMedPubMedCentral Meissnitzer T, Seymer A, Keinrath P, Holzmannhofer J, Pirich C, Hergan K, et al. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br J Radiol. 2015;88(1051):20150147.CrossRefPubMedPubMedCentral
19.
go back to reference Kim BS, Moon BI, Cha ES. A comparative study of breast-specific gamma imaging with the conventional imaging modality in breast cancer patients with dense breasts. Ann Nucl Med. 2012;26(10):823–9.CrossRefPubMed Kim BS, Moon BI, Cha ES. A comparative study of breast-specific gamma imaging with the conventional imaging modality in breast cancer patients with dense breasts. Ann Nucl Med. 2012;26(10):823–9.CrossRefPubMed
20.
go back to reference Werner J, Rapelyea JA, Yost KG, Brem RF. Quantification of radio-tracer uptake in axillary lymph nodes using breast specific gamma imaging (BSGI): benign radio-tracer extravasation versus uptake secondary to breast cancer. Breast J. 2009;15(6):579–82.CrossRefPubMed Werner J, Rapelyea JA, Yost KG, Brem RF. Quantification of radio-tracer uptake in axillary lymph nodes using breast specific gamma imaging (BSGI): benign radio-tracer extravasation versus uptake secondary to breast cancer. Breast J. 2009;15(6):579–82.CrossRefPubMed
21.
go back to reference Bevers TBAB, Bonaccio E, Buys S, Daly MB, Dempsey PJ, Farrar WB, et al. NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J Natl Compr Canc Netw. 2009;7(10):1060–96.PubMed Bevers TBAB, Bonaccio E, Buys S, Daly MB, Dempsey PJ, Farrar WB, et al. NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J Natl Compr Canc Netw. 2009;7(10):1060–96.PubMed
22.
go back to reference Tozaki M, Isomoto I, Kojima Y, Kubota K, Kuroki Y, Ohnuki K, et al. The Japanese breast cancer society clinical practice guideline for screening and imaging diagnosis of breast cancer. Breast cancer. 2015;22(1):28–36.CrossRefPubMed Tozaki M, Isomoto I, Kojima Y, Kubota K, Kuroki Y, Ohnuki K, et al. The Japanese breast cancer society clinical practice guideline for screening and imaging diagnosis of breast cancer. Breast cancer. 2015;22(1):28–36.CrossRefPubMed
23.
go back to reference Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499–507.CrossRefPubMed Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499–507.CrossRefPubMed
24.
go back to reference Knuttel FMMG, van den Bosch MA, Gilhuijs KG, Peters NH. Current clinical indications for magnetic resonance imaging of the breast. J Surg Oncol. 2014;110(1):26–31.CrossRefPubMed Knuttel FMMG, van den Bosch MA, Gilhuijs KG, Peters NH. Current clinical indications for magnetic resonance imaging of the breast. J Surg Oncol. 2014;110(1):26–31.CrossRefPubMed
25.
go back to reference Zhou M, Johnson N, Gruner S, Ecklund GW, Meunier P, Bryn S, et al. Clinical utility of breast-specific gamma imaging for evaluating disease extent in the newly diagnosed breast cancer patient. Am J Surg. 2009;197(2):159–63.CrossRefPubMed Zhou M, Johnson N, Gruner S, Ecklund GW, Meunier P, Bryn S, et al. Clinical utility of breast-specific gamma imaging for evaluating disease extent in the newly diagnosed breast cancer patient. Am J Surg. 2009;197(2):159–63.CrossRefPubMed
26.
go back to reference Johnson N, Sorenson L, Bennetts L, Winter K, Bryn S, Johnson W, et al. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI. Am J Surg. 2014;207(5):698–701.CrossRefPubMed Johnson N, Sorenson L, Bennetts L, Winter K, Bryn S, Johnson W, et al. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI. Am J Surg. 2014;207(5):698–701.CrossRefPubMed
27.
go back to reference Yoon HJ, Kim Y, Chang KT, Kim BS. Prognostic value of semi-quantitative tumor uptake on Tc-99m sestamibi breast-specific gamma imaging in invasive ductal breast cancer. Ann Nucl Med. 2015;29(7):553–60.CrossRefPubMed Yoon HJ, Kim Y, Chang KT, Kim BS. Prognostic value of semi-quantitative tumor uptake on Tc-99m sestamibi breast-specific gamma imaging in invasive ductal breast cancer. Ann Nucl Med. 2015;29(7):553–60.CrossRefPubMed
28.
go back to reference Kim SJ, Kim IJ, Bae YT, Kim YK, Kim DS. Comparison of quantitative and visual analysis of Tc-99m MIBI scintimammography for detection of primary breast cancer. Eur J Radiol. 2005;53(2):192–8.CrossRefPubMed Kim SJ, Kim IJ, Bae YT, Kim YK, Kim DS. Comparison of quantitative and visual analysis of Tc-99m MIBI scintimammography for detection of primary breast cancer. Eur J Radiol. 2005;53(2):192–8.CrossRefPubMed
29.
go back to reference Zhou M, Johnson N, Blanchard D, Bryn S, Nelson J. Real-world application of breast-specific gamma imaging, initial experience at a community breast center and its potential impact on clinical care. Am J Surg. 2008;195(5):631–5.CrossRefPubMed Zhou M, Johnson N, Blanchard D, Bryn S, Nelson J. Real-world application of breast-specific gamma imaging, initial experience at a community breast center and its potential impact on clinical care. Am J Surg. 2008;195(5):631–5.CrossRefPubMed
30.
go back to reference Park JS, Lee AY, Jung KP, Choi SJ, Lee SM, Kyun BS. Diagnostic performance of breast-specific gamma imaging (BSGI) for breast cancer: usefulness of dual-phase imaging with (99m)Tc-sestamibi. J Nucl Med Mol Imaging. 2013;47(1):18–26.CrossRef Park JS, Lee AY, Jung KP, Choi SJ, Lee SM, Kyun BS. Diagnostic performance of breast-specific gamma imaging (BSGI) for breast cancer: usefulness of dual-phase imaging with (99m)Tc-sestamibi. J Nucl Med Mol Imaging. 2013;47(1):18–26.CrossRef
Metadata
Title
Retrospective and comparative analysis of 99mTc-Sestamibi breast specific gamma imaging versus mammography, ultrasound, and magnetic resonance imaging for the detection of breast cancer in Chinese women
Authors
Xiuyan Yu
Guoming Hu
Zhigang Zhang
Fuming Qiu
Xuan Shao
Xiaochen Wang
Hongwei Zhan
Yiding Chen
Yongchuan Deng
Jian Huang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2537-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine