Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 7/2021

01-07-2021 | Retinal Diseases | Retinal Disorders

Comparison between two multimodal imaging platforms: Nidek Mirante and Heidelberg Spectralis

Authors: Kimberly Spooner, Long Phan, Mariano Cozzi, Thomas Hong, Giovanni Staurenghi, Eugenia Chu, Andrew A Chang

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 7/2021

Login to get access

Abstract

Purpose

To investigate the reliability and comparability of retinal measurements obtained with spectral-domain optical coherence tomography (OCT), optical coherence tomography angiography (OCTA), confocal scanning laser ophthalmoscopy (cSLO) colour images, and fundus autofluorescence (FAF) between two multimodal imaging platforms in eyes with macular pathology and normal, healthy volunteers.

Methods

This cross-sectional, multi-centre, instrument validation study recruited 94 consecutive subjects. All participants underwent a dilated examination and were scanned consecutively on the Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany) and Nidek Mirante (Nidek Co. Ltd., Gamagori, Japan) devices. Agreement between device images were evaluated from measures of the central retinal thickness (CRT), presence of segmentation and fixation imaging artefacts (IA), foveal avascular zone (FAZ) measurements; as well as sensitivity and specificity values from the detection of atrophy on fundus autofluorescence (FAF), drusen, subretinal drusenoid deposits, geographic atrophy, epiretinal membrane, fibrosis and haemorrhage on multicolour imaging, and agreement between devices and groups.

Results

Compared with reference clinical examination, sensitivity values for the identification of retinal features using sole device images ranged from 100% for epiretinal membranes to 66.7% for subretinal drusenoid deposits (SSD). Mean absolute difference for CRT between OCT devices was 3.78 μm (95% confidence interval [CI]: − 21.39 to 28.95, P = 0.809). Differences in the superficial and deep capillary plexus FAZ area on OCTA between devices were not statistically significant (P = 0.881 and P = 0.595, respectively). IAs were significantly increased in the presence of macular pathology.

Conclusion

Comparison of retinal measurements between the OCT devices did not differ significantly. Common ultrastructural biomarkers of multiple macular pathologies were identified with high sensitivities and specificities, with good agreement between graders, indicating that they can be identified with comparable confidence in retinal imaging between the two devices.
Literature
3.
go back to reference Lauermann JL, Woetzel AK, Treder M, Alnawaiseh M, Clemens CR, Eter N, Alten F (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 256(10):1807–1816. https://doi.org/10.1007/s00417-018-4053-2CrossRefPubMed Lauermann JL, Woetzel AK, Treder M, Alnawaiseh M, Clemens CR, Eter N, Alten F (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 256(10):1807–1816. https://​doi.​org/​10.​1007/​s00417-018-4053-2CrossRefPubMed
5.
go back to reference Bogunovic H, Venhuizen F, Klimscha S, Apostolopoulos S, Bab-Hadiashar A, Bagci U, Beg MF, Bekalo L, Chen Q, Ciller C, Gopinath K, Gostar AK, Jeon K, Ji Z, Kang SH, Koozekanani DD, Lu D, Morley D, Parhi KK, Park HS, Rashno A, Sarunic M, Shaikh S, Sivaswamy J, Tennakoon R, Yadav S, De Zanet S, Waldstein SM, Gerendas BS, Klaver C, Sanchez CI, Schmidt-Erfurth U (2019) RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imaging 38(8):1858–1874. https://doi.org/10.1109/tmi.2019.2901398CrossRefPubMed Bogunovic H, Venhuizen F, Klimscha S, Apostolopoulos S, Bab-Hadiashar A, Bagci U, Beg MF, Bekalo L, Chen Q, Ciller C, Gopinath K, Gostar AK, Jeon K, Ji Z, Kang SH, Koozekanani DD, Lu D, Morley D, Parhi KK, Park HS, Rashno A, Sarunic M, Shaikh S, Sivaswamy J, Tennakoon R, Yadav S, De Zanet S, Waldstein SM, Gerendas BS, Klaver C, Sanchez CI, Schmidt-Erfurth U (2019) RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imaging 38(8):1858–1874. https://​doi.​org/​10.​1109/​tmi.​2019.​2901398CrossRefPubMed
7.
go back to reference Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2010) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye (London, England) 24(2):251–258. https://doi.org/10.1038/eye.2009.76CrossRef Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2010) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye (London, England) 24(2):251–258. https://​doi.​org/​10.​1038/​eye.​2009.​76CrossRef
15.
go back to reference Rabiolo A, Gelormini F, Marchese A, Cicinelli MV, Triolo G, Sacconi R, Querques L, Bandello F, Querques G (2018) Macular perfusion parameters in different angiocube sizes: does the size matter in quantitative optical coherence tomography angiography? Invest Ophthalmol Vis Sci 59(1):231–237. https://doi.org/10.1167/iovs.17-22359CrossRefPubMed Rabiolo A, Gelormini F, Marchese A, Cicinelli MV, Triolo G, Sacconi R, Querques L, Bandello F, Querques G (2018) Macular perfusion parameters in different angiocube sizes: does the size matter in quantitative optical coherence tomography angiography? Invest Ophthalmol Vis Sci 59(1):231–237. https://​doi.​org/​10.​1167/​iovs.​17-22359CrossRefPubMed
17.
go back to reference Aumann S, Donner S, Fischer J, Müller F (2019) Optical coherence tomography (OCT): principle and technical realization. In: Bille JF (ed) High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Springer Copyright 2019, The Author(s). Cham (CH), pp 59-85. doi:https://doi.org/10.1007/978-3-030-16638-0_3 Aumann S, Donner S, Fischer J, Müller F (2019) Optical coherence tomography (OCT): principle and technical realization. In: Bille JF (ed) High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Springer Copyright 2019, The Author(s). Cham (CH), pp 59-85. doi:https://​doi.​org/​10.​1007/​978-3-030-16638-0_​3
20.
go back to reference Müller PL, Pfau M, Mauschitz MM, Möller PT, Birtel J, Chang P, Gliem M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG, Herrmann P (2018) Comparison of green versus blue fundus autofluorescence in ABCA4-related retinopathy. Translational vision science & technology 7(5):13. https://doi.org/10.1167/tvst.7.5.13CrossRef Müller PL, Pfau M, Mauschitz MM, Möller PT, Birtel J, Chang P, Gliem M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG, Herrmann P (2018) Comparison of green versus blue fundus autofluorescence in ABCA4-related retinopathy. Translational vision science & technology 7(5):13. https://​doi.​org/​10.​1167/​tvst.​7.​5.​13CrossRef
24.
go back to reference Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363PubMed Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363PubMed
25.
go back to reference Lu Y, Wang JC, Zeng R, Katz R, Vavvas DG, Miller JW, Miller JB (2019) Quantitative comparison of microvascular metrics on three optical coherence tomography angiography devices in chorioretinal disease. Clinical ophthalmology (Auckland, NZ) 13:2063-2069. doi:https://doi.org/10.2147/opth.S215322 Lu Y, Wang JC, Zeng R, Katz R, Vavvas DG, Miller JW, Miller JB (2019) Quantitative comparison of microvascular metrics on three optical coherence tomography angiography devices in chorioretinal disease. Clinical ophthalmology (Auckland, NZ) 13:2063-2069. doi:https://​doi.​org/​10.​2147/​opth.​S215322
26.
27.
go back to reference Mo S, Krawitz B, Efstathiadis E, Geyman L, Weitz R, Chui TY, Carroll J, Dubra A, Rosen RB (2016) Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Investigative ophthalmology & visual science 57 (9):Oct130-140. doi:https://doi.org/10.1167/iovs.15-18932 Mo S, Krawitz B, Efstathiadis E, Geyman L, Weitz R, Chui TY, Carroll J, Dubra A, Rosen RB (2016) Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Investigative ophthalmology & visual science 57 (9):Oct130-140. doi:https://​doi.​org/​10.​1167/​iovs.​15-18932
29.
go back to reference Chin EK, Sedeek RW, Li Y, Beckett L, Redenbo E, Chandra K, Park SS (2012) Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye 43(2):97–108. https://doi.org/10.3928/15428877-20111222-02CrossRef Chin EK, Sedeek RW, Li Y, Beckett L, Redenbo E, Chandra K, Park SS (2012) Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye 43(2):97–108. https://​doi.​org/​10.​3928/​15428877-20111222-02CrossRef
32.
go back to reference Smretschnig E, Krebs I, Moussa S, Ansari-Shahrezaei S, Ansari-Shahrezarei S, Binder S (2010) Cirrus OCT versus Spectralis OCT: differences in segmentation in fibrovascular pigment epithelial detachment. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 248. doi:https://doi.org/10.1007/s00417-010-1415-9 Smretschnig E, Krebs I, Moussa S, Ansari-Shahrezaei S, Ansari-Shahrezarei S, Binder S (2010) Cirrus OCT versus Spectralis OCT: differences in segmentation in fibrovascular pigment epithelial detachment. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 248. doi:https://​doi.​org/​10.​1007/​s00417-010-1415-9
33.
go back to reference Willoughby AS, Chiu SJ, Silverman RK, Farsiu S, Bailey C, Wiley HE, Ferris FL 3rd, Jaffe GJ (2017) Platform-independent cirrus and Spectralis thickness measurements in eyes with diabetic macular edema using fully automated software. Translational vision science & technology 6(1):9. https://doi.org/10.1167/tvst.6.1.9CrossRef Willoughby AS, Chiu SJ, Silverman RK, Farsiu S, Bailey C, Wiley HE, Ferris FL 3rd, Jaffe GJ (2017) Platform-independent cirrus and Spectralis thickness measurements in eyes with diabetic macular edema using fully automated software. Translational vision science & technology 6(1):9. https://​doi.​org/​10.​1167/​tvst.​6.​1.​9CrossRef
Metadata
Title
Comparison between two multimodal imaging platforms: Nidek Mirante and Heidelberg Spectralis
Authors
Kimberly Spooner
Long Phan
Mariano Cozzi
Thomas Hong
Giovanni Staurenghi
Eugenia Chu
Andrew A Chang
Publication date
01-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 7/2021
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-020-05050-7

Other articles of this Issue 7/2021

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2021 Go to the issue