Skip to main content
Top
Published in: Endocrine 3/2019

01-12-2019 | Respiratory Microbiota | Original Article

Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications

Authors: Lijuan Zhao, Hongxiang Lou, Ying Peng, Shihong Chen, Yulong Zhang, Xiaobo Li

Published in: Endocrine | Issue 3/2019

Login to get access

Abstract

Purpose

As the treatment regimens such as metformin could confound the correlation between type 2 diabetes (T2D) and gut microbiome, we should revisit the relationship between gut microbiota and T2D patients who are not currently treated with metformin.

Methods

The study recruited 65 T2D patients: 49 with and 16 without diabetic complications, and 35 healthy controls. We sequenced the 16S rRNA V3-V4 region of gut microbiota and detected metabolites based on liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) in faecal samples.

Results

The composition of both the gut microbiota and faecal metabolites changed significantly with T2D patients. The abundance of Proteobacteria and the ratio of Firmicutes/Bacteroidetes were higher in T2D patients than healthy subjects, and the short chain fatty acids (SCFAs), bile acids and lipids of T2D patients were significantly disordered. Moreover, the abundances of certain SCFA-producing bacteria (Lachnospiraceae and Ruminococcaceae etc.) were significantly increased in T2D patients, while the faecal SCFAs concentrations were significantly decreased. It’s suggested that the role of SCFA-producing bacteria was not simply to produce SCFAs. Then we identified 44 microbial modules to explore the correlations between the gut microbiota and metabolic traits. Specially, most modules including certain SCFA-producing bacteria were comprehensively correlated to body mass index, the levels of blood glucose, blood pressure, blood cholesterol and faecal bile acids and lipids.

Conclusions

Our study identified the relationships between the gut microbiota and faecal metabolites, and provided a resource for future studies to understand host–gut microbiota interactions in T2D.
Appendix
Available only for authorised users
Literature
1.
go back to reference S.V. Lynch, O. Pedersen, The human intestinal microbiome in health and disease. New Engl. J. Med. 375, 2369–2379 (2016)PubMedCrossRef S.V. Lynch, O. Pedersen, The human intestinal microbiome in health and disease. New Engl. J. Med. 375, 2369–2379 (2016)PubMedCrossRef
3.
go back to reference K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A.Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore; H.I.T.c. Meta, H.Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S.Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262 (2015)PubMedPubMedCentralCrossRef K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A.Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore; H.I.T.c. Meta, H.Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S.Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262 (2015)PubMedPubMedCentralCrossRef
4.
go back to reference H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Manneras-Holm, M. Stahlman, L.M. Olsson, M. Serino, M. Planas-Felix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernandez-Real, F. Backhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017)PubMedCrossRef H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Manneras-Holm, M. Stahlman, L.M. Olsson, M. Serino, M. Planas-Felix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernandez-Real, F. Backhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017)PubMedCrossRef
5.
go back to reference E. Org, Y. Blum, S. Kasela, M. Mehrabian, J. Kuusisto, A.J. Kangas, P. Soininen, Z. Wang, M. Ala-Korpela, S.L. Hazen, M. Laakso, A.J. Lusis, Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017)PubMedPubMedCentralCrossRef E. Org, Y. Blum, S. Kasela, M. Mehrabian, J. Kuusisto, A.J. Kangas, P. Soininen, Z. Wang, M. Ala-Korpela, S.L. Hazen, M. Laakso, A.J. Lusis, Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017)PubMedPubMedCentralCrossRef
6.
go back to reference F. Brial, A. Le Lay, M.E. Dumas, D. Gauguier, Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol. Life Sci. 75(21), 3977–3990 (2018)PubMedPubMedCentralCrossRef F. Brial, A. Le Lay, M.E. Dumas, D. Gauguier, Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol. Life Sci. 75(21), 3977–3990 (2018)PubMedPubMedCentralCrossRef
7.
go back to reference E.E. Canfora, J.W. Jocken, E.E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015)PubMedCrossRef E.E. Canfora, J.W. Jocken, E.E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015)PubMedCrossRef
8.
go back to reference Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, Y. Wu, P. Schauer, J.D. Smith, H. Allayee, W.H. Tang, J.A. DiDonato, A.J. Lusis, S.L. Hazen, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011)PubMedPubMedCentralCrossRef Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, Y. Wu, P. Schauer, J.D. Smith, H. Allayee, W.H. Tang, J.A. DiDonato, A.J. Lusis, S.L. Hazen, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011)PubMedPubMedCentralCrossRef
9.
go back to reference H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, T. Hyotylainen, T. Nielsen, B.A. Jensen, K. Forslund, F. Hildebrand, E. Prifti, G. Falony, E. Le Chatelier, F. Levenez, J. Dore, I. Mattila, D.R. Plichta, P. Poho, L.I. Hellgren, M. Arumugam, S. Sunagawa, S. Vieira-Silva, T. Jorgensen, J.B. Holm, K. Trost, H.I.T.C. Meta, K. Kristiansen, S. Brix, J. Raes, J. Wang, T. Hansen, P. Bork, S. Brunak, M. Oresic, S.D. Ehrlich, O. Pedersen, Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016)PubMedCrossRef H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, T. Hyotylainen, T. Nielsen, B.A. Jensen, K. Forslund, F. Hildebrand, E. Prifti, G. Falony, E. Le Chatelier, F. Levenez, J. Dore, I. Mattila, D.R. Plichta, P. Poho, L.I. Hellgren, M. Arumugam, S. Sunagawa, S. Vieira-Silva, T. Jorgensen, J.B. Holm, K. Trost, H.I.T.C. Meta, K. Kristiansen, S. Brix, J. Raes, J. Wang, T. Hansen, P. Bork, S. Brunak, M. Oresic, S.D. Ehrlich, O. Pedersen, Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016)PubMedCrossRef
10.
go back to reference V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013)PubMedCrossRef V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013)PubMedCrossRef
11.
go back to reference D. Dodd, M.H. Spitzer, W. Van Treuren, B.D. Merrill, A.J. Hryckowian, S.K. Higginbottom, A. Le, T.M. Cowan, G.P. Nolan, M.A. Fischbach, J.L. Sonnenburg, A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017)PubMedPubMedCentralCrossRef D. Dodd, M.H. Spitzer, W. Van Treuren, B.D. Merrill, A.J. Hryckowian, S.K. Higginbottom, A. Le, T.M. Cowan, G.P. Nolan, M.A. Fischbach, J.L. Sonnenburg, A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017)PubMedPubMedCentralCrossRef
12.
go back to reference R. Liu, J. Hong, X. Xu, Q. Feng, D. Zhang, Y. Gu, J. Shi, S. Zhao, W. Liu, X. Wang, H. Xia, Z. Liu, B. Cui, P. Liang, L. Xi, J. Jin, X. Ying, X. Wang, X. Zhao, W. Li, H. Jia, Z. Lan, F. Li, R. Wang, Y. Sun, M. Yang, Y. Shen, Z. Jie, J. Li, X. Chen, H. Zhong, H. Xie, Y. Zhang, W. Gu, X. Deng, B. Shen, X. Xu, H. Yang, G. Xu, Y. Bi, S. Lai, J. Wang, L. Qi, L. Madsen, J. Wang, G. Ning, K. Kristiansen, W. Wang, Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med 23, 859–868 (2017)PubMedCrossRef R. Liu, J. Hong, X. Xu, Q. Feng, D. Zhang, Y. Gu, J. Shi, S. Zhao, W. Liu, X. Wang, H. Xia, Z. Liu, B. Cui, P. Liang, L. Xi, J. Jin, X. Ying, X. Wang, X. Zhao, W. Li, H. Jia, Z. Lan, F. Li, R. Wang, Y. Sun, M. Yang, Y. Shen, Z. Jie, J. Li, X. Chen, H. Zhong, H. Xie, Y. Zhang, W. Gu, X. Deng, B. Shen, X. Xu, H. Yang, G. Xu, Y. Bi, S. Lai, J. Wang, L. Qi, L. Madsen, J. Wang, G. Ning, K. Kristiansen, W. Wang, Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med 23, 859–868 (2017)PubMedCrossRef
13.
go back to reference A. Koh, A. Molinaro, M. Stahlman, M.T. Khan, C. Schmidt, L. Manneras-Holm, H. Wu, A. Carreras, H. Jeong, L.E. Olofsson, P.O. Bergh, V. Gerdes, A. Hartstra, M. de Brauw, R. Perkins, M. Nieuwdorp, G. Bergstrom, F. Backhed, Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 e917 (2018)PubMedCrossRef A. Koh, A. Molinaro, M. Stahlman, M.T. Khan, C. Schmidt, L. Manneras-Holm, H. Wu, A. Carreras, H. Jeong, L.E. Olofsson, P.O. Bergh, V. Gerdes, A. Hartstra, M. de Brauw, R. Perkins, M. Nieuwdorp, G. Bergstrom, F. Backhed, Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 e917 (2018)PubMedCrossRef
14.
go back to reference American diabetes association, Standards of medical care in diabetes–2014. Diabetes Care 37(Suppl 1), S14–S80 (2014) American diabetes association, Standards of medical care in diabetes–2014. Diabetes Care 37(Suppl 1), S14–S80 (2014)
15.
go back to reference American diabetes association, Standards of medical care in diabetes–2011. Diabetes Care 34(Suppl 1), S11–S61 (2011) American diabetes association, Standards of medical care in diabetes–2011. Diabetes Care 34(Suppl 1), S11–S61 (2011)
16.
go back to reference R.C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)PubMedCrossRef R.C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)PubMedCrossRef
17.
go back to reference J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010)PubMedPubMedCentralCrossRef J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010)PubMedPubMedCentralCrossRef
18.
19.
go back to reference D. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst, G.L. Andersen, R. Knight, P. Hugenholtz, An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012)PubMedCrossRef D. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst, G.L. Andersen, R. Knight, P. Hugenholtz, An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012)PubMedCrossRef
20.
go back to reference M.G. Langille, J. Zaneveld, J.G. Caporaso, D. McDonald, D. Knights, J.A. Reyes, J.C. Clemente, D.E. Burkepile, R.L. Vega Thurber, R. Knight, R.G. Beiko, C. Huttenhower, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013)PubMedPubMedCentralCrossRef M.G. Langille, J. Zaneveld, J.G. Caporaso, D. McDonald, D. Knights, J.A. Reyes, J.C. Clemente, D.E. Burkepile, R.L. Vega Thurber, R. Knight, R.G. Beiko, C. Huttenhower, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013)PubMedPubMedCentralCrossRef
21.
go back to reference D.H. Parks, G.W. Tyson, P. Hugenholtz, R.G. Beiko, STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014)PubMedPubMedCentralCrossRef D.H. Parks, G.W. Tyson, P. Hugenholtz, R.G. Beiko, STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014)PubMedPubMedCentralCrossRef
22.
go back to reference Y. Li, Y. Peng, P. Ma, H. Yang, H. Xiong, M. Wang, C. Peng, P. Tu, X. Li, Antidepressant-like effects of cistanche tubulosa extract on chronic unpredictable stress rats through restoration of gut microbiota homeostasis. Front. Pharmacol. 9, 967 (2018) Y. Li, Y. Peng, P. Ma, H. Yang, H. Xiong, M. Wang, C. Peng, P. Tu, X. Li, Antidepressant-like effects of cistanche tubulosa extract on chronic unpredictable stress rats through restoration of gut microbiota homeostasis. Front. Pharmacol. 9, 967 (2018)
23.
go back to reference R. Wang, Y. Peng, H. Meng, X. Li, Protective effect of polysaccharides fractions from Sijunzi decoction in reserpine-induced spleen deficiency rats. RSC Adv. 6, 60657–60665 (2016)CrossRef R. Wang, Y. Peng, H. Meng, X. Li, Protective effect of polysaccharides fractions from Sijunzi decoction in reserpine-induced spleen deficiency rats. RSC Adv. 6, 60657–60665 (2016)CrossRef
24.
go back to reference H. Cao, H. Huang, W. Xu, D. Chen, J. Yu, J. Li, L. Li, Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography–mass spectrometry. Analytica Chim. Acta 691, 68–75 (2011)CrossRef H. Cao, H. Huang, W. Xu, D. Chen, J. Yu, J. Li, L. Li, Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography–mass spectrometry. Analytica Chim. Acta 691, 68–75 (2011)CrossRef
25.
go back to reference H. Liu, X. Chen, X. Hu, H. Niu, R. Tian, H. Wang, H. Pang, L. Jiang, B. Qiu, X. Chen, Y. Zhang, Y. Ma, S. Tang, H. Li, S. Feng, S. Zhang, C. Zhang, Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019)PubMedPubMedCentralCrossRef H. Liu, X. Chen, X. Hu, H. Niu, R. Tian, H. Wang, H. Pang, L. Jiang, B. Qiu, X. Chen, Y. Zhang, Y. Ma, S. Tang, H. Li, S. Feng, S. Zhang, C. Zhang, Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019)PubMedPubMedCentralCrossRef
26.
go back to reference D.S. Wishart, Y.D. Feunang, A. Marcu, A.C. Guo, K. Liang, R. Vazquez-Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, A. Scalbert, HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018)PubMedCrossRef D.S. Wishart, Y.D. Feunang, A. Marcu, A.C. Guo, K. Liang, R. Vazquez-Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, A. Scalbert, HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018)PubMedCrossRef
27.
go back to reference M. Sud, E. Fahy, D. Cotter, A. Brown, E.A. Dennis, C.K. Glass, A.H. Merrill Jr., R.C. Murphy, C.R. Raetz, D.W. Russell, S. Subramaniam, LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007)PubMedCrossRef M. Sud, E. Fahy, D. Cotter, A. Brown, E.A. Dennis, C.K. Glass, A.H. Merrill Jr., R.C. Murphy, C.R. Raetz, D.W. Russell, S. Subramaniam, LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007)PubMedCrossRef
28.
go back to reference C.A. Smith, G. O’Maille, E.J. Want, C. Qin, S.A. Trauger, T.R. Brandon, D.E. Custodio, R. Abagyan, G. Siuzdak, METLIN: a metabolite mass spectral database. Therapeutic Drug Monit. 27, 747–751 (2005)CrossRef C.A. Smith, G. O’Maille, E.J. Want, C. Qin, S.A. Trauger, T.R. Brandon, D.E. Custodio, R. Abagyan, G. Siuzdak, METLIN: a metabolite mass spectral database. Therapeutic Drug Monit. 27, 747–751 (2005)CrossRef
29.
go back to reference T. Wu, G. Xie, Y. Ni, T. Liu, M. Yang, H. Wei, W. Jia, G. Ji, Serum metabolite signatures of type 2 diabetes mellitus complications. J. Proteome Res. 14, 447–456 (2015)PubMedCrossRef T. Wu, G. Xie, Y. Ni, T. Liu, M. Yang, H. Wei, W. Jia, G. Ji, Serum metabolite signatures of type 2 diabetes mellitus complications. J. Proteome Res. 14, 447–456 (2015)PubMedCrossRef
30.
go back to reference P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008)CrossRef P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008)CrossRef
31.
go back to reference P. Langfelder, B. Zhang, S. Horvath, Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24, 719–720 (2008)PubMedCrossRef P. Langfelder, B. Zhang, S. Horvath, Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24, 719–720 (2008)PubMedCrossRef
32.
go back to reference J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, Y. Peng, D. Zhang, Z. Jie, W. Wu, Y. Qin, W. Xue, J. Li, L. Han, D. Lu, P. Wu, Y. Dai, X. Sun, Z. Li, A. Tang, S. Zhong, X. Li, W. Chen, R. Xu, M. Wang, Q. Feng, M. Gong, J. Yu, Y. Zhang, M. Zhang, T. Hansen, G. Sanchez, J. Raes, G. Falony, S. Okuda, M. Almeida, E. LeChatelier, P. Renault, N. Pons, J.M. Batto, Z. Zhang, H. Chen, R. Yang, W. Zheng, S. Li, H. Yang, J. Wang, S.D. Ehrlich, R. Nielsen, O. Pedersen, K. Kristiansen, J. Wang, A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012)PubMedCrossRef J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, Y. Peng, D. Zhang, Z. Jie, W. Wu, Y. Qin, W. Xue, J. Li, L. Han, D. Lu, P. Wu, Y. Dai, X. Sun, Z. Li, A. Tang, S. Zhong, X. Li, W. Chen, R. Xu, M. Wang, Q. Feng, M. Gong, J. Yu, Y. Zhang, M. Zhang, T. Hansen, G. Sanchez, J. Raes, G. Falony, S. Okuda, M. Almeida, E. LeChatelier, P. Renault, N. Pons, J.M. Batto, Z. Zhang, H. Chen, R. Yang, W. Zheng, S. Li, H. Yang, J. Wang, S.D. Ehrlich, R. Nielsen, O. Pedersen, K. Kristiansen, J. Wang, A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012)PubMedCrossRef
33.
go back to reference F.H. Karlsson, V. Tremaroli, I. Nookaew, G. Bergstrom, C.J. Behre, B. Fagerberg, J. Nielsen, F. Backhed, Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013)PubMedCrossRef F.H. Karlsson, V. Tremaroli, I. Nookaew, G. Bergstrom, C.J. Behre, B. Fagerberg, J. Nielsen, F. Backhed, Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013)PubMedCrossRef
34.
go back to reference W. Feng, H. Ao, C. Peng, D. Yan, Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 142, 176–191 (2019)PubMedCrossRef W. Feng, H. Ao, C. Peng, D. Yan, Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 142, 176–191 (2019)PubMedCrossRef
35.
go back to reference J. Fernandes, W. Su, S. Rahat-Rozenbloom, T.M. Wolever, E.M. Comelli, Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014)PubMedPubMedCentralCrossRef J. Fernandes, W. Su, S. Rahat-Rozenbloom, T.M. Wolever, E.M. Comelli, Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014)PubMedPubMedCentralCrossRef
36.
go back to reference J.A. Vogt, T.M. Wolever, Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J. Nutr. 133, 3145–3148 (2003)PubMedCrossRef J.A. Vogt, T.M. Wolever, Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J. Nutr. 133, 3145–3148 (2003)PubMedCrossRef
37.
go back to reference A.V. Hartstra, K.E. Bouter, F. Backhed, M. Nieuwdorp, Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38, 159–165 (2015)PubMedCrossRef A.V. Hartstra, K.E. Bouter, F. Backhed, M. Nieuwdorp, Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38, 159–165 (2015)PubMedCrossRef
38.
go back to reference I. Moreno-Indias, L. Sanchez-Alcoholado, E. Garcia-Fuentes, F. Cardona, M.I. Queipo-Ortuno, F.J. Tinahones, Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am. J. Transl. Res. 8, 5672–5684 (2016)PubMedPubMedCentral I. Moreno-Indias, L. Sanchez-Alcoholado, E. Garcia-Fuentes, F. Cardona, M.I. Queipo-Ortuno, F.J. Tinahones, Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am. J. Transl. Res. 8, 5672–5684 (2016)PubMedPubMedCentral
39.
go back to reference L. Sanchez-Alcoholado, D. Castellano-Castillo, L. Jordan-Martinez, I. Moreno-Indias, P. Cardila-Cruz, D. Elena, A.J. Munoz-Garcia, M.I. Queipo-Ortuno, M. Jimenez-Navarro, Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes mellitus. Front Microbiol. 8, 1936 (2017)PubMedPubMedCentralCrossRef L. Sanchez-Alcoholado, D. Castellano-Castillo, L. Jordan-Martinez, I. Moreno-Indias, P. Cardila-Cruz, D. Elena, A.J. Munoz-Garcia, M.I. Queipo-Ortuno, M. Jimenez-Navarro, Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes mellitus. Front Microbiol. 8, 1936 (2017)PubMedPubMedCentralCrossRef
40.
go back to reference J.P. Furet, L.C. Kong, J. Tap, C. Poitou, A. Basdevant, J.L. Bouillot, D. Mariat, G. Corthier, J. Dore, C. Henegar, S. Rizkalla, K. Clement, Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010)PubMedPubMedCentralCrossRef J.P. Furet, L.C. Kong, J. Tap, C. Poitou, A. Basdevant, J.L. Bouillot, D. Mariat, G. Corthier, J. Dore, C. Henegar, S. Rizkalla, K. Clement, Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010)PubMedPubMedCentralCrossRef
41.
go back to reference J. Li, F. Zhao, Y. Wang, J. Chen, J. Tao, G. Tian, S. Wu, W. Liu, Q. Cui, B. Geng, W. Zhang, R. Weldon, K. Auguste, L. Yang, X. Liu, L. Chen, X. Yang, B. Zhu, J. Cai, Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017)PubMedPubMedCentralCrossRef J. Li, F. Zhao, Y. Wang, J. Chen, J. Tao, G. Tian, S. Wu, W. Liu, Q. Cui, B. Geng, W. Zhang, R. Weldon, K. Auguste, L. Yang, X. Liu, L. Chen, X. Yang, B. Zhu, J. Cai, Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017)PubMedPubMedCentralCrossRef
42.
go back to reference Z. Jie, H. Xia, S.L. Zhong, Q. Feng, S. Li, S. Liang, H. Zhong, Z. Liu, Y. Gao, H. Zhao, D. Zhang, Z. Su, Z. Fang, Z. Lan, J. Li, L. Xiao, J. Li, R. Li, X. Li, F. Li, H. Ren, Y. Huang, Y. Peng, G. Li, B. Wen, B. Dong, J.Y. Chen, Q.S. Geng, Z.W. Zhang, H. Yang, J. Wang, J. Wang, X. Zhang, L. Madsen, S. Brix, G. Ning, X. Xu, X. Liu, Y. Hou, H. Jia, K. He, K. Kristiansen, The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017)PubMedPubMedCentralCrossRef Z. Jie, H. Xia, S.L. Zhong, Q. Feng, S. Li, S. Liang, H. Zhong, Z. Liu, Y. Gao, H. Zhao, D. Zhang, Z. Su, Z. Fang, Z. Lan, J. Li, L. Xiao, J. Li, R. Li, X. Li, F. Li, H. Ren, Y. Huang, Y. Peng, G. Li, B. Wen, B. Dong, J.Y. Chen, Q.S. Geng, Z.W. Zhang, H. Yang, J. Wang, J. Wang, X. Zhang, L. Madsen, S. Brix, G. Ning, X. Xu, X. Liu, Y. Hou, H. Jia, K. He, K. Kristiansen, The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017)PubMedPubMedCentralCrossRef
43.
go back to reference K.H. Allin, V. Tremaroli, R. Caesar, B.A.H. Jensen, M.T.F. Damgaard, M.I. Bahl, T.R. Licht, T.H. Hansen, T. Nielsen, T.M. Dantoft, A. Linneberg, T. Jorgensen, H. Vestergaard, K. Kristiansen, P.W. Franks, I.-D. consortium, T. Hansen, F. Backhed, O. Pedersen, Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018)PubMedPubMedCentralCrossRef K.H. Allin, V. Tremaroli, R. Caesar, B.A.H. Jensen, M.T.F. Damgaard, M.I. Bahl, T.R. Licht, T.H. Hansen, T. Nielsen, T.M. Dantoft, A. Linneberg, T. Jorgensen, H. Vestergaard, K. Kristiansen, P.W. Franks, I.-D. consortium, T. Hansen, F. Backhed, O. Pedersen, Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018)PubMedPubMedCentralCrossRef
44.
go back to reference W.H. Tang, Z. Wang, X.S. Li, Y. Fan, D.S. Li, Y. Wu, S.L. Hazen, Increased trimethylamine n-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 63, 297–306 (2017)PubMedCrossRef W.H. Tang, Z. Wang, X.S. Li, Y. Fan, D.S. Li, Y. Wu, S.L. Hazen, Increased trimethylamine n-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 63, 297–306 (2017)PubMedCrossRef
45.
go back to reference F.P. Martin, Y. Wang, N. Sprenger, I.K. Yap, T. Lundstedt, P. Lek, S. Rezzi, Z. Ramadan, P. van Bladeren, L.B. Fay, S. Kochhar, J.C. Lindon, E. Holmes, J.K. Nicholson, Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4, 157 (2008)PubMedPubMedCentralCrossRef F.P. Martin, Y. Wang, N. Sprenger, I.K. Yap, T. Lundstedt, P. Lek, S. Rezzi, Z. Ramadan, P. van Bladeren, L.B. Fay, S. Kochhar, J.C. Lindon, E. Holmes, J.K. Nicholson, Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4, 157 (2008)PubMedPubMedCentralCrossRef
46.
go back to reference X.Z. Zhang, S.X. Zheng, Y.M. Hou, A. Non-Targeted, Liquid chromatographic-mass spectrometric metabolomics approach for association with coronary artery disease: an identification of biomarkers for depiction of underlying biological mechanisms. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 23, 613–622 (2017) X.Z. Zhang, S.X. Zheng, Y.M. Hou, A. Non-Targeted, Liquid chromatographic-mass spectrometric metabolomics approach for association with coronary artery disease: an identification of biomarkers for depiction of underlying biological mechanisms. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 23, 613–622 (2017)
47.
go back to reference J.S. Escobar, B. Klotz, B.E. Valdes, G.M. Agudelo, The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14, 311 (2014)PubMedPubMedCentralCrossRef J.S. Escobar, B. Klotz, B.E. Valdes, G.M. Agudelo, The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14, 311 (2014)PubMedPubMedCentralCrossRef
48.
go back to reference A. Wahlstrom, S.I. Sayin, H.U. Marschall, F. Backhed, Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016)PubMedCrossRef A. Wahlstrom, S.I. Sayin, H.U. Marschall, F. Backhed, Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016)PubMedCrossRef
49.
go back to reference M.S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche, S.I. Sayin, A. Perino, C.A. Brighton, Y. Sebti, J. Kluza, O. Briand, H. Dehondt, E. Vallez, E. Dorchies, G. Baud, V. Spinelli, N. Hennuyer, S. Caron, K. Bantubungi, R. Caiazzo, F. Reimann, P. Marchetti, P. Lefebvre, F. Backhed, F.M. Gribble, K. Schoonjans, F. Pattou, A. Tailleux, B. Staels, S. Lestavel, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015)PubMedCrossRef M.S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche, S.I. Sayin, A. Perino, C.A. Brighton, Y. Sebti, J. Kluza, O. Briand, H. Dehondt, E. Vallez, E. Dorchies, G. Baud, V. Spinelli, N. Hennuyer, S. Caron, K. Bantubungi, R. Caiazzo, F. Reimann, P. Marchetti, P. Lefebvre, F. Backhed, F.M. Gribble, K. Schoonjans, F. Pattou, A. Tailleux, B. Staels, S. Lestavel, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015)PubMedCrossRef
50.
go back to reference C. Thomas, A. Gioiello, L. Noriega, A. Strehle, J. Oury, G. Rizzo, A. Macchiarulo, H. Yamamoto, C. Mataki, M. Pruzanski, R. Pellicciari, J. Auwerx, K. Schoonjans, TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009)PubMedPubMedCentralCrossRef C. Thomas, A. Gioiello, L. Noriega, A. Strehle, J. Oury, G. Rizzo, A. Macchiarulo, H. Yamamoto, C. Mataki, M. Pruzanski, R. Pellicciari, J. Auwerx, K. Schoonjans, TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009)PubMedPubMedCentralCrossRef
51.
go back to reference O. Chavez-Talavera, A. Tailleux, P. Lefebvre, B. Staels, Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694 e1673 (2017)PubMedCrossRef O. Chavez-Talavera, A. Tailleux, P. Lefebvre, B. Staels, Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694 e1673 (2017)PubMedCrossRef
52.
go back to reference S.A. Joyce, J. MacSharry, P.G. Casey, M. Kinsella, E.F. Murphy, F. Shanahan, C. Hill, C.G. Gahan, Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 111, 7421–7426 (2014)PubMedCrossRefPubMedCentral S.A. Joyce, J. MacSharry, P.G. Casey, M. Kinsella, E.F. Murphy, F. Shanahan, C. Hill, C.G. Gahan, Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 111, 7421–7426 (2014)PubMedCrossRefPubMedCentral
53.
go back to reference G. Kakiyama, W.M. Pandak, P.M. Gillevet, P.B. Hylemon, D.M. Heuman, K. Daita, H. Takei, A. Muto, H. Nittono, J.M. Ridlon, M.B. White, N.A. Noble, P. Monteith, M. Fuchs, L.R. Thacker, M. Sikaroodi, J.S. Bajaj, Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013)PubMedPubMedCentralCrossRef G. Kakiyama, W.M. Pandak, P.M. Gillevet, P.B. Hylemon, D.M. Heuman, K. Daita, H. Takei, A. Muto, H. Nittono, J.M. Ridlon, M.B. White, N.A. Noble, P. Monteith, M. Fuchs, L.R. Thacker, M. Sikaroodi, J.S. Bajaj, Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013)PubMedPubMedCentralCrossRef
54.
go back to reference X. Zheng, F. Huang, A. Zhao, S. Lei, Y. Zhang, G. Xie, T. Chen, C. Qu, C. Rajani, B. Dong, D. Li, W. Jia, Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 15, 120 (2017)PubMedPubMedCentralCrossRef X. Zheng, F. Huang, A. Zhao, S. Lei, Y. Zhang, G. Xie, T. Chen, C. Qu, C. Rajani, B. Dong, D. Li, W. Jia, Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 15, 120 (2017)PubMedPubMedCentralCrossRef
56.
go back to reference F. Liu, Z. Ling, Y. Xiao, Q. Yang, B. Wang, L. Zheng, P. Jiang, L. Li, W. Wang, Alterations of urinary microbiota in type 2 diabetes mellitus with hypertension and/or hyperlipidemia. Front Physiol. 8, 126 (2017)PubMedPubMedCentral F. Liu, Z. Ling, Y. Xiao, Q. Yang, B. Wang, L. Zheng, P. Jiang, L. Li, W. Wang, Alterations of urinary microbiota in type 2 diabetes mellitus with hypertension and/or hyperlipidemia. Front Physiol. 8, 126 (2017)PubMedPubMedCentral
57.
go back to reference K. Makki, E.C. Deehan, J. Walter, F. Bäckhed, The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 23, 705–715 (2018)PubMedCrossRef K. Makki, E.C. Deehan, J. Walter, F. Bäckhed, The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 23, 705–715 (2018)PubMedCrossRef
58.
go back to reference A.V. Hartstra, M. Nieuwdorp, H. Herrema, Interplay between gut microbiota, its metabolites and human metabolism: dissecting cause from consequence. Trends Food Sci. Technol. 57, 233–243 (2016)CrossRef A.V. Hartstra, M. Nieuwdorp, H. Herrema, Interplay between gut microbiota, its metabolites and human metabolism: dissecting cause from consequence. Trends Food Sci. Technol. 57, 233–243 (2016)CrossRef
Metadata
Title
Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications
Authors
Lijuan Zhao
Hongxiang Lou
Ying Peng
Shihong Chen
Yulong Zhang
Xiaobo Li
Publication date
01-12-2019
Publisher
Springer US
Published in
Endocrine / Issue 3/2019
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-019-02103-8

Other articles of this Issue 3/2019

Endocrine 3/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.