Skip to main content
Top
Published in: Journal of Translational Medicine 1/2011

Open Access 01-12-2011 | Research

Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice

Authors: Nanhai G Chen, Yong A Yu, Qian Zhang, Aladar A Szalay

Published in: Journal of Translational Medicine | Issue 1/2011

Login to get access

Abstract

Background

We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, β-galactosidase, and β-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV-1h68. This strain shows tumor-specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice

Methods

A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV-1h68 with short non-coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts.

Results

we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice.

Conclusions

These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals.
Appendix
Available only for authorised users
Literature
3.
go back to reference Chen NG, Szalay AA: Oncolytic virotherapy of cancer. Cancer Managment in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Edited by: Minev BR. 2011, New York: Springer, 13: 295-316. [Nasir A, Yeatman TJ (Series Editor) Cancer Growth and Progression]CrossRef Chen NG, Szalay AA: Oncolytic virotherapy of cancer. Cancer Managment in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Edited by: Minev BR. 2011, New York: Springer, 13: 295-316. [Nasir A, Yeatman TJ (Series Editor) Cancer Growth and Progression]CrossRef
4.
go back to reference Kirn DH, Thorne SH: Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009, 9: 64-71. 10.1038/nrc2545.CrossRefPubMed Kirn DH, Thorne SH: Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009, 9: 64-71. 10.1038/nrc2545.CrossRefPubMed
5.
go back to reference Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID: Smallpox and its eradication. 1988, Geneva: World Health Organization Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID: Smallpox and its eradication. 1988, Geneva: World Health Organization
6.
go back to reference Levaditi C, Nicolau S: Sur le culture du virus vaccinal dans les neoplasmes epithelieux. CR Soc Biol. 1922, 86: 928- Levaditi C, Nicolau S: Sur le culture du virus vaccinal dans les neoplasmes epithelieux. CR Soc Biol. 1922, 86: 928-
7.
8.
go back to reference Chen NG, Szalay AA: Oncolytic vaccinia virus: a theranostic agent for cancer. Future Virol. 2010, 5: 763-784. 10.2217/fvl.10.58.CrossRef Chen NG, Szalay AA: Oncolytic vaccinia virus: a theranostic agent for cancer. Future Virol. 2010, 5: 763-784. 10.2217/fvl.10.58.CrossRef
9.
go back to reference Yang S, Guo ZS, O'Malley ME, Yin X, Zeh HJ, Bartlett DL: A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Ther. 2007, 14: 638-647. 10.1038/sj.gt.3302914.CrossRefPubMed Yang S, Guo ZS, O'Malley ME, Yin X, Zeh HJ, Bartlett DL: A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Ther. 2007, 14: 638-647. 10.1038/sj.gt.3302914.CrossRefPubMed
10.
go back to reference Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, Marincola FM, Szalay AA: Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 2007, 67: 10038-10046. 10.1158/0008-5472.CAN-07-0146.CrossRefPubMed Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, Marincola FM, Szalay AA: Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 2007, 67: 10038-10046. 10.1158/0008-5472.CAN-07-0146.CrossRefPubMed
11.
go back to reference Zhang Q, Liang C, Yu YA, Chen N, Dandekar T, Szalay AA: The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics. 2009, 282: 417-435. 10.1007/s00438-009-0475-1.PubMedCentralCrossRefPubMed Zhang Q, Liang C, Yu YA, Chen N, Dandekar T, Szalay AA: The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics. 2009, 282: 417-435. 10.1007/s00438-009-0475-1.PubMedCentralCrossRefPubMed
12.
go back to reference Rathinavelu P, Malave A, Raney SR, Hurst J, Roberson CT, Rathinavelu A: Expression of mdm-2 oncoprotein in the primary and metastatic sites of mammary tumor (GI-101) implanted athymic nude mice. Cancer Biochem Biophys. 1999, 17: 133-146.PubMed Rathinavelu P, Malave A, Raney SR, Hurst J, Roberson CT, Rathinavelu A: Expression of mdm-2 oncoprotein in the primary and metastatic sites of mammary tumor (GI-101) implanted athymic nude mice. Cancer Biochem Biophys. 1999, 17: 133-146.PubMed
13.
go back to reference Horton RM, Ho SN, Pullen JK, Hunt HD, Cai Z, Pease LR: Gene splicing by overlap extension. Methods Enzymol. 1993, 217: 270-279.CrossRefPubMed Horton RM, Ho SN, Pullen JK, Hunt HD, Cai Z, Pease LR: Gene splicing by overlap extension. Methods Enzymol. 1993, 217: 270-279.CrossRefPubMed
14.
go back to reference Chen N, Zhang Q, Yu YA, Stritzker J, Brader P, Schirbel A, Samnick S, Serganova I, Blasberg R, Fong Y, Szalay AA: A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging. Mol Med. 2009, 15: 144-151.PubMedCentralCrossRefPubMed Chen N, Zhang Q, Yu YA, Stritzker J, Brader P, Schirbel A, Samnick S, Serganova I, Blasberg R, Fong Y, Szalay AA: A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging. Mol Med. 2009, 15: 144-151.PubMedCentralCrossRefPubMed
15.
go back to reference Chakrabarti S, Sisler JR, Moss B: Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques. 1997, 23: 1094-1097.PubMed Chakrabarti S, Sisler JR, Moss B: Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques. 1997, 23: 1094-1097.PubMed
16.
go back to reference Lin SF, Yu Z, Riedl C, Woo Y, Zhang Q, Yu YA, Timiryasova T, Chen N, Shah JP, Szalay AA: Treatment of anaplastic thyroid carcinoma in vitro with a mutant vaccinia virus. Surgery. 2007, 142: 976-983. 10.1016/j.surg.2007.09.017. discussion 976-983CrossRefPubMed Lin SF, Yu Z, Riedl C, Woo Y, Zhang Q, Yu YA, Timiryasova T, Chen N, Shah JP, Szalay AA: Treatment of anaplastic thyroid carcinoma in vitro with a mutant vaccinia virus. Surgery. 2007, 142: 976-983. 10.1016/j.surg.2007.09.017. discussion 976-983CrossRefPubMed
17.
go back to reference Kelly KJ, Woo Y, Brader P, Yu Z, Riedl C, Lin SF, Chen N, Yu YA, Rusch VW, Szalay AA, Fong Y: Novel oncolytic agent GLV-1h68 is effective against malignant pleural mesothelioma. Hum Gene Ther. 2008, 19: 774-782. 10.1089/hum.2008.036.PubMedCentralCrossRefPubMed Kelly KJ, Woo Y, Brader P, Yu Z, Riedl C, Lin SF, Chen N, Yu YA, Rusch VW, Szalay AA, Fong Y: Novel oncolytic agent GLV-1h68 is effective against malignant pleural mesothelioma. Hum Gene Ther. 2008, 19: 774-782. 10.1089/hum.2008.036.PubMedCentralCrossRefPubMed
18.
go back to reference Lin SF, Price DL, Chen CH, Brader P, Li S, Gonzalez L, Zhang Q, Yu YA, Chen N, Szalay AA: Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. J Clin Endocrinol Metab. 2008, 93: 4403-4407. 10.1210/jc.2008-0316.PubMedCentralCrossRefPubMed Lin SF, Price DL, Chen CH, Brader P, Li S, Gonzalez L, Zhang Q, Yu YA, Chen N, Szalay AA: Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. J Clin Endocrinol Metab. 2008, 93: 4403-4407. 10.1210/jc.2008-0316.PubMedCentralCrossRefPubMed
19.
go back to reference Gentschev I, Stritzker J, Hofmann E, Weibel S, Yu YA, Chen N, Zhang Q, Bullerdiek J, Nolte I, Szalay AA: Use of an oncolytic vaccinia virus for the treatment of canine breast cancer in nude mice: preclinical development of a therapeutic agent. Cancer Gene Ther. 2009, 16: 320-328. 10.1038/cgt.2008.87.CrossRefPubMed Gentschev I, Stritzker J, Hofmann E, Weibel S, Yu YA, Chen N, Zhang Q, Bullerdiek J, Nolte I, Szalay AA: Use of an oncolytic vaccinia virus for the treatment of canine breast cancer in nude mice: preclinical development of a therapeutic agent. Cancer Gene Ther. 2009, 16: 320-328. 10.1038/cgt.2008.87.CrossRefPubMed
20.
go back to reference Yu YA, Galanis C, Woo Y, Chen N, Zhang Q, Fong Y, Szalay AA: Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol Cancer Ther. 2009, 8: 141-151. 10.1158/1535-7163.MCT-08-0533.PubMedCentralCrossRefPubMed Yu YA, Galanis C, Woo Y, Chen N, Zhang Q, Fong Y, Szalay AA: Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol Cancer Ther. 2009, 8: 141-151. 10.1158/1535-7163.MCT-08-0533.PubMedCentralCrossRefPubMed
21.
go back to reference Yu Z, Li S, Brader P, Chen N, Yu YA, Zhang Q, Szalay AA, Fong Y, Wong RJ: Oncolytic vaccinia therapy of squamous cell carcinoma. Mol Cancer. 2009, 8: 45-PubMedCentralCrossRefPubMed Yu Z, Li S, Brader P, Chen N, Yu YA, Zhang Q, Szalay AA, Fong Y, Wong RJ: Oncolytic vaccinia therapy of squamous cell carcinoma. Mol Cancer. 2009, 8: 45-PubMedCentralCrossRefPubMed
22.
go back to reference Gentschev I, Donat U, Hofmann E, Weibel S, Adelfinger M, Raab V, Heisig M, Chen N, Yu YA, Stritzker J, Szalay AA: Regression of human prostate tumors and metastases in nude mice following treatment with the recombinant oncolytic vaccinia virus GLV-1h68. J Biomed Biotechnol. 2010, 2010: 489759-PubMedCentralCrossRefPubMed Gentschev I, Donat U, Hofmann E, Weibel S, Adelfinger M, Raab V, Heisig M, Chen N, Yu YA, Stritzker J, Szalay AA: Regression of human prostate tumors and metastases in nude mice following treatment with the recombinant oncolytic vaccinia virus GLV-1h68. J Biomed Biotechnol. 2010, 2010: 489759-PubMedCentralCrossRefPubMed
23.
go back to reference Gentschev I, Ehrig K, Donat U, Hess M, Rudolph S, Chen N, Yu YA, Zhang Q, Bullerdiek J, Nolte I: Significant Growth Inhibition of Canine Mammary Carcinoma Xenografts following Treatment with Oncolytic Vaccinia Virus GLV-1h68. J Oncol. 2010, 2010: 736907-PubMedCentralCrossRefPubMed Gentschev I, Ehrig K, Donat U, Hess M, Rudolph S, Chen N, Yu YA, Zhang Q, Bullerdiek J, Nolte I: Significant Growth Inhibition of Canine Mammary Carcinoma Xenografts following Treatment with Oncolytic Vaccinia Virus GLV-1h68. J Oncol. 2010, 2010: 736907-PubMedCentralCrossRefPubMed
24.
go back to reference Seubert CM, Stritzker J, Hess M, Donat U, Sturm JB, Chen N, von Hof JM, Krewer B, Tietze LF, Gentschev I, Szalay AA: Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a beta-galactosidase-activatable prodrug seco-analog of duocarmycin SA. Cancer Gene Ther. 2011, 18: 42-52. 10.1038/cgt.2010.49.PubMedCentralCrossRefPubMed Seubert CM, Stritzker J, Hess M, Donat U, Sturm JB, Chen N, von Hof JM, Krewer B, Tietze LF, Gentschev I, Szalay AA: Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a beta-galactosidase-activatable prodrug seco-analog of duocarmycin SA. Cancer Gene Ther. 2011, 18: 42-52. 10.1038/cgt.2010.49.PubMedCentralCrossRefPubMed
25.
go back to reference Izmailyan R, Chang W: Vaccinia virus WR53.5/F14.5 protein is a new component of intracellular mature virus and is important for calcium-independent cell adhesion and vaccinia virus virulence in mice. J Virol. 2008, 82: 10079-10087. 10.1128/JVI.00816-08.PubMedCentralCrossRefPubMed Izmailyan R, Chang W: Vaccinia virus WR53.5/F14.5 protein is a new component of intracellular mature virus and is important for calcium-independent cell adhesion and vaccinia virus virulence in mice. J Virol. 2008, 82: 10079-10087. 10.1128/JVI.00816-08.PubMedCentralCrossRefPubMed
26.
go back to reference Buller RM, Chakrabarti S, Cooper JA, Twardzik DR, Moss B: Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol. 1988, 62: 866-874.PubMedCentralPubMed Buller RM, Chakrabarti S, Cooper JA, Twardzik DR, Moss B: Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol. 1988, 62: 866-874.PubMedCentralPubMed
27.
go back to reference Shida H, Hinuma Y, Hatanaka M, Morita M, Kidokoro M, Suzuki K, Maruyama T, Takahashi-Nishimaki F, Sugimoto M, Kitamura R: Effects and virulences of recombinant vaccinia viruses derived from attenuated strains that express the human T-cell leukemia virus type I envelope gene. J Virol. 1988, 62: 4474-4480.PubMedCentralPubMed Shida H, Hinuma Y, Hatanaka M, Morita M, Kidokoro M, Suzuki K, Maruyama T, Takahashi-Nishimaki F, Sugimoto M, Kitamura R: Effects and virulences of recombinant vaccinia viruses derived from attenuated strains that express the human T-cell leukemia virus type I envelope gene. J Virol. 1988, 62: 4474-4480.PubMedCentralPubMed
28.
go back to reference Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, Sun YY, Roy DG, Rintoul JL, Daneshmand M: Targeting Tumor Vasculature With an Oncolytic Virus. Mol Ther. 2011, 886-94. Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, Sun YY, Roy DG, Rintoul JL, Daneshmand M: Targeting Tumor Vasculature With an Oncolytic Virus. Mol Ther. 2011, 886-94.
29.
go back to reference Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, Vile RG: The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009, 20: 1119-1132. 10.1089/hum.2009.135.PubMedCentralCrossRefPubMed Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, Vile RG: The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009, 20: 1119-1132. 10.1089/hum.2009.135.PubMedCentralCrossRefPubMed
30.
go back to reference Parato KA, Lichty BD, Bell JC: Diplomatic immunity: turning a foe into an ally. Curr Opin Mol Ther. 2009, 11: 13-21.PubMed Parato KA, Lichty BD, Bell JC: Diplomatic immunity: turning a foe into an ally. Curr Opin Mol Ther. 2009, 11: 13-21.PubMed
31.
go back to reference Kirn DH, Wang Y, Le Boeuf F, Bell J, Thorne SH: Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 2007, 4: e353-10.1371/journal.pmed.0040353.PubMedCentralCrossRefPubMed Kirn DH, Wang Y, Le Boeuf F, Bell J, Thorne SH: Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 2007, 4: e353-10.1371/journal.pmed.0040353.PubMedCentralCrossRefPubMed
32.
go back to reference Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM, Szalay AA: Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 2011, 11: 68-10.1186/1471-2407-11-68.PubMedCentralCrossRefPubMed Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM, Szalay AA: Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 2011, 11: 68-10.1186/1471-2407-11-68.PubMedCentralCrossRefPubMed
33.
go back to reference Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T, Thompson J, Galivo F, Harrington KJ, Pandha HS: Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009, 15: 4374-4381. 10.1158/1078-0432.CCR-09-0334.CrossRefPubMed Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T, Thompson J, Galivo F, Harrington KJ, Pandha HS: Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009, 15: 4374-4381. 10.1158/1078-0432.CCR-09-0334.CrossRefPubMed
Metadata
Title
Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice
Authors
Nanhai G Chen
Yong A Yu
Qian Zhang
Aladar A Szalay
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2011
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-9-164

Other articles of this Issue 1/2011

Journal of Translational Medicine 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.