Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection

Authors: Stephanie Weibel, Viktoria Raab, Yong A Yu, Andrea Worschech, Ena Wang, Francesco M Marincola, Aladar A Szalay

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV).

Methods

Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase) by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient) or upon cyclophosphamide-induced immunosuppression (MHCII+-cell depletion) in nude mice.

Results

Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII+/CD31+ vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in either immunosuppressed nude mice (MHCII+-cell depleted) or in immune-deficient mouse strains (T-, B-, NK-cell-deficient) revealed that neither MHCII-positive immune cells nor T-, B-, or NK cells contributed significantly to VACV-mediated tumor regression. In contrast, tumors of immunosuppressed mice showed enhanced viral spreading and tumor necrosis.

Conclusions

Taken together, these results indicate that VACV-mediated oncolysis is the primary mechanism of tumor shrinkage in the late regression phase. Neither the destruction of the tumor vasculature nor the massive VACV-mediated intratumoral inflammation was a prerequisite for tumor regression. We propose that approaches to enhance viral replication and spread within the tumor microenvironment should improve therapeutical outcome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE: Oncolytic viruses in cancer therapy. Cancer Lett. 2007, 254 (2): 178-216. 10.1016/j.canlet.2007.02.002.CrossRefPubMed Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE: Oncolytic viruses in cancer therapy. Cancer Lett. 2007, 254 (2): 178-216. 10.1016/j.canlet.2007.02.002.CrossRefPubMed
2.
go back to reference Parato KA, Senger D, Forsyth PA, Bell JC: Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005, 5 (12): 965-976. 10.1038/nrc1750.CrossRefPubMed Parato KA, Senger D, Forsyth PA, Bell JC: Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005, 5 (12): 965-976. 10.1038/nrc1750.CrossRefPubMed
3.
go back to reference Bell JC, Lichty B, Stojdl D: Getting oncolytic virus therapies off the ground. Cancer Cell. 2003, 4 (1): 7-11. 10.1016/S1535-6108(03)00170-3.CrossRefPubMed Bell JC, Lichty B, Stojdl D: Getting oncolytic virus therapies off the ground. Cancer Cell. 2003, 4 (1): 7-11. 10.1016/S1535-6108(03)00170-3.CrossRefPubMed
4.
go back to reference Kirn D, Martuza RL, Zwiebel J: Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med. 2001, 7 (7): 781-787. 10.1038/89901.CrossRefPubMed Kirn D, Martuza RL, Zwiebel J: Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med. 2001, 7 (7): 781-787. 10.1038/89901.CrossRefPubMed
5.
go back to reference Roberts MS, Lorence RM, Groene WS, Bamat MK: Naturally oncolytic viruses. Curr Opin Mol Ther. 2006, 8 (4): 314-321.PubMed Roberts MS, Lorence RM, Groene WS, Bamat MK: Naturally oncolytic viruses. Curr Opin Mol Ther. 2006, 8 (4): 314-321.PubMed
6.
go back to reference Randall RE, Goodbourn S: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008, 89 (Pt 1): 1-47. 10.1099/vir.0.83391-0.CrossRefPubMed Randall RE, Goodbourn S: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008, 89 (Pt 1): 1-47. 10.1099/vir.0.83391-0.CrossRefPubMed
7.
go back to reference Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA: The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother. 2009, 58 (9): 1355-1362. 10.1007/s00262-009-0686-7.CrossRefPubMedPubMedCentral Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA: The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother. 2009, 58 (9): 1355-1362. 10.1007/s00262-009-0686-7.CrossRefPubMedPubMedCentral
8.
go back to reference Stanford MM, Breitbach CJ, Bell JC, McFadden G: Innate immunity, tumor microenvironment and oncolytic virus therapy: friends or foes?. Curr Opin Mol Ther. 2008, 10 (1): 32-37.PubMed Stanford MM, Breitbach CJ, Bell JC, McFadden G: Innate immunity, tumor microenvironment and oncolytic virus therapy: friends or foes?. Curr Opin Mol Ther. 2008, 10 (1): 32-37.PubMed
9.
go back to reference Mueller MM, Fusenig NE: Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004, 4 (11): 839-849. 10.1038/nrc1477.CrossRefPubMed Mueller MM, Fusenig NE: Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004, 4 (11): 839-849. 10.1038/nrc1477.CrossRefPubMed
10.
go back to reference Kuruppu D, Tanabe KK: Viral oncolysis by herpes simplex virus and other viruses. Cancer Biol Ther. 2005, 4 (5): 524-531. 10.4161/cbt.4.5.1820.CrossRefPubMed Kuruppu D, Tanabe KK: Viral oncolysis by herpes simplex virus and other viruses. Cancer Biol Ther. 2005, 4 (5): 524-531. 10.4161/cbt.4.5.1820.CrossRefPubMed
11.
go back to reference Frentzen A, Yu YA, Chen N, Zhang Q, Weibel S, Raab V, Szalay AA: Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proc Natl Acad Sci USA. 2009, 106 (31): 12915-12920. 10.1073/pnas.0900660106.CrossRefPubMedPubMedCentral Frentzen A, Yu YA, Chen N, Zhang Q, Weibel S, Raab V, Szalay AA: Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proc Natl Acad Sci USA. 2009, 106 (31): 12915-12920. 10.1073/pnas.0900660106.CrossRefPubMedPubMedCentral
12.
go back to reference Tysome JR, Lemoine NR, Wang Y: Combination of anti-angiogenic therapy and virotherapy: arming oncolytic viruses with anti-angiogenic genes. Curr Opin Mol Ther. 2009, 11 (6): 664-669.PubMed Tysome JR, Lemoine NR, Wang Y: Combination of anti-angiogenic therapy and virotherapy: arming oncolytic viruses with anti-angiogenic genes. Curr Opin Mol Ther. 2009, 11 (6): 664-669.PubMed
13.
go back to reference Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T, Thompson J, Galivo F, Harrington KJ, Pandha HS, et al: Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009, 15 (13): 4374-4381. 10.1158/1078-0432.CCR-09-0334.CrossRefPubMedPubMedCentral Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T, Thompson J, Galivo F, Harrington KJ, Pandha HS, et al: Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009, 15 (13): 4374-4381. 10.1158/1078-0432.CCR-09-0334.CrossRefPubMedPubMedCentral
14.
go back to reference Kirn DH, Wang Y, Le Boeuf F, Bell J, Thorne SH: Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 2007, 4 (12): e353-10.1371/journal.pmed.0040353.CrossRefPubMedPubMedCentral Kirn DH, Wang Y, Le Boeuf F, Bell J, Thorne SH: Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 2007, 4 (12): e353-10.1371/journal.pmed.0040353.CrossRefPubMedPubMedCentral
15.
go back to reference Kottke T, Hall G, Pulido J, Diaz RM, Thompson J, Chong H, Selby P, Coffey M, Pandha H, Chester J, et al: Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J Clin Invest. Kottke T, Hall G, Pulido J, Diaz RM, Thompson J, Chong H, Selby P, Coffey M, Pandha H, Chester J, et al: Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J Clin Invest.
16.
go back to reference Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, Marincola FM, Szalay AA: Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 2007, 67 (20): 10038-10046. 10.1158/0008-5472.CAN-07-0146.CrossRefPubMed Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, Marincola FM, Szalay AA: Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 2007, 67 (20): 10038-10046. 10.1158/0008-5472.CAN-07-0146.CrossRefPubMed
17.
go back to reference Zhang Q, Liang C, Yu YA, Chen N, Dandekar T, Szalay AA: The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics. 2009, 282 (4): 417-435. 10.1007/s00438-009-0475-1.CrossRefPubMedPubMedCentral Zhang Q, Liang C, Yu YA, Chen N, Dandekar T, Szalay AA: The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics. 2009, 282 (4): 417-435. 10.1007/s00438-009-0475-1.CrossRefPubMedPubMedCentral
18.
go back to reference Weibel S, Stritzker J, Eck M, Goebel W, Szalay AA: Colonization of experimental murine breast tumours by Escherichia coli K-12 significantly alters the tumour microenvironment. Cell Microbiol. 2008, 10 (6): 1235-1248. 10.1111/j.1462-5822.2008.01122.x.CrossRefPubMed Weibel S, Stritzker J, Eck M, Goebel W, Szalay AA: Colonization of experimental murine breast tumours by Escherichia coli K-12 significantly alters the tumour microenvironment. Cell Microbiol. 2008, 10 (6): 1235-1248. 10.1111/j.1462-5822.2008.01122.x.CrossRefPubMed
19.
go back to reference Thomas MA, Spencer JF, Toth K, Sagartz JE, Phillips NJ, Wold WS: Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model. Mol Ther. 2008, 16 (10): 1665-1673. 10.1038/mt.2008.162.CrossRefPubMedPubMedCentral Thomas MA, Spencer JF, Toth K, Sagartz JE, Phillips NJ, Wold WS: Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model. Mol Ther. 2008, 16 (10): 1665-1673. 10.1038/mt.2008.162.CrossRefPubMedPubMedCentral
20.
go back to reference Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM: High-fidelity mRNA amplification for gene profiling. Nat Biotechnol. 2000, 18 (4): 457-459. 10.1038/74546.CrossRefPubMed Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM: High-fidelity mRNA amplification for gene profiling. Nat Biotechnol. 2000, 18 (4): 457-459. 10.1038/74546.CrossRefPubMed
22.
go back to reference Jin P, Zhao Y, Ngalame Y, Panelli MC, Nagorsen D, Monsurro V, Smith K, Hu N, Su H, Taylor PR, et al: Selection and validation of endogenous reference genes using a high throughput approach. BMC Genomics. 2004, 5 (1): 55-10.1186/1471-2164-5-55.CrossRefPubMedPubMedCentral Jin P, Zhao Y, Ngalame Y, Panelli MC, Nagorsen D, Monsurro V, Smith K, Hu N, Su H, Taylor PR, et al: Selection and validation of endogenous reference genes using a high throughput approach. BMC Genomics. 2004, 5 (1): 55-10.1186/1471-2164-5-55.CrossRefPubMedPubMedCentral
23.
go back to reference Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997, 275 (5307): 1790-1792. 10.1126/science.275.5307.1790.CrossRefPubMed Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997, 275 (5307): 1790-1792. 10.1126/science.275.5307.1790.CrossRefPubMed
24.
go back to reference Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.CrossRefPubMedPubMedCentral Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.CrossRefPubMedPubMedCentral
25.
go back to reference Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, et al: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000, 24 (3): 227-235. 10.1038/73432.CrossRefPubMed Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, et al: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000, 24 (3): 227-235. 10.1038/73432.CrossRefPubMed
26.
go back to reference Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target. Nature. 2005, 438 (7070): 967-974. 10.1038/nature04483.CrossRefPubMed Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target. Nature. 2005, 438 (7070): 967-974. 10.1038/nature04483.CrossRefPubMed
27.
go back to reference Frantz S, Vincent KA, Feron O, Kelly RA: Innate immunity and angiogenesis. Circ Res. 2005, 96 (1): 15-26. 10.1161/01.RES.0000153188.68898.ac.CrossRefPubMed Frantz S, Vincent KA, Feron O, Kelly RA: Innate immunity and angiogenesis. Circ Res. 2005, 96 (1): 15-26. 10.1161/01.RES.0000153188.68898.ac.CrossRefPubMed
28.
go back to reference Baluk P, Hashizume H, McDonald DM: Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005, 15 (1): 102-111. 10.1016/j.gde.2004.12.005.CrossRefPubMed Baluk P, Hashizume H, McDonald DM: Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005, 15 (1): 102-111. 10.1016/j.gde.2004.12.005.CrossRefPubMed
29.
go back to reference Vestweber D: Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev. 2007, 218: 178-196. 10.1111/j.1600-065X.2007.00533.x.CrossRefPubMed Vestweber D: Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev. 2007, 218: 178-196. 10.1111/j.1600-065X.2007.00533.x.CrossRefPubMed
30.
go back to reference Loppnow H, Werdan K, Buerke M: Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun. 2008, 14 (2): 63-87. 10.1177/1753425908091246.CrossRefPubMed Loppnow H, Werdan K, Buerke M: Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun. 2008, 14 (2): 63-87. 10.1177/1753425908091246.CrossRefPubMed
31.
go back to reference Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J, Kaur B, Louis DN, Weissleder R, Caligiuri MA, et al: Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA. 2006, 103 (34): 12873-12878. 10.1073/pnas.0605496103.CrossRefPubMedPubMedCentral Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J, Kaur B, Louis DN, Weissleder R, Caligiuri MA, et al: Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA. 2006, 103 (34): 12873-12878. 10.1073/pnas.0605496103.CrossRefPubMedPubMedCentral
32.
go back to reference Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, Stojdl DF, Daneshmand M, Speth K, Kirn D, et al: Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007, 15 (9): 1686-1693. 10.1038/sj.mt.6300215.CrossRefPubMed Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, Stojdl DF, Daneshmand M, Speth K, Kirn D, et al: Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007, 15 (9): 1686-1693. 10.1038/sj.mt.6300215.CrossRefPubMed
33.
go back to reference Aghi M, Rabkin SD, Martuza RL: Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res. 2007, 67 (2): 440-444. 10.1158/0008-5472.CAN-06-3145.CrossRefPubMed Aghi M, Rabkin SD, Martuza RL: Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res. 2007, 67 (2): 440-444. 10.1158/0008-5472.CAN-06-3145.CrossRefPubMed
34.
go back to reference Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W, Chiocca EA, et al: Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 2007, 99 (23): 1768-1781. 10.1093/jnci/djm229.CrossRefPubMed Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W, Chiocca EA, et al: Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 2007, 99 (23): 1768-1781. 10.1093/jnci/djm229.CrossRefPubMed
35.
go back to reference Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A, Chiocca EA, Kaur B: Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther. 2008, 16 (8): 1382-1391. 10.1038/mt.2008.112.CrossRefPubMedPubMedCentral Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A, Chiocca EA, Kaur B: Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther. 2008, 16 (8): 1382-1391. 10.1038/mt.2008.112.CrossRefPubMedPubMedCentral
36.
go back to reference Liu Y, Deisseroth A: Tumor vascular targeting therapy with viral vectors. Blood. 2006, 107 (8): 3027-3033. 10.1182/blood-2005-10-4114.CrossRefPubMed Liu Y, Deisseroth A: Tumor vascular targeting therapy with viral vectors. Blood. 2006, 107 (8): 3027-3033. 10.1182/blood-2005-10-4114.CrossRefPubMed
37.
go back to reference Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G: Vascular leukocytes contribute to tumor vascularization. Blood. 2005, 105 (2): 679-681. 10.1182/blood-2004-05-1906.CrossRefPubMed Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G: Vascular leukocytes contribute to tumor vascularization. Blood. 2005, 105 (2): 679-681. 10.1182/blood-2004-05-1906.CrossRefPubMed
38.
go back to reference Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK: Pathology: cancer cells compress intratumour vessels. Nature. 2004, 427 (6976): 695-10.1038/427695a.CrossRefPubMed Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK: Pathology: cancer cells compress intratumour vessels. Nature. 2004, 427 (6976): 695-10.1038/427695a.CrossRefPubMed
39.
go back to reference Wang E, Worschech A, Marincola FM: The immunologic constant of rejection. Trends Immunol. 2008, 29 (6): 256-262. 10.1016/j.it.2008.03.002.CrossRefPubMed Wang E, Worschech A, Marincola FM: The immunologic constant of rejection. Trends Immunol. 2008, 29 (6): 256-262. 10.1016/j.it.2008.03.002.CrossRefPubMed
40.
41.
go back to reference Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F: Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008, 8 (10): 1581-1588. 10.1586/14737140.8.10.1581.CrossRefPubMedPubMedCentral Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F: Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008, 8 (10): 1581-1588. 10.1586/14737140.8.10.1581.CrossRefPubMedPubMedCentral
42.
go back to reference Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y, Kaufman CS, Kaur B, Lawler SE, Lee RJ, et al: Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 2007, 67 (19): 9398-9406. 10.1158/0008-5472.CAN-07-1063.CrossRefPubMedPubMedCentral Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y, Kaufman CS, Kaur B, Lawler SE, Lee RJ, et al: Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 2007, 67 (19): 9398-9406. 10.1158/0008-5472.CAN-07-1063.CrossRefPubMedPubMedCentral
43.
go back to reference Perdiguero B, Esteban M: The interferon system and vaccinia virus evasion mechanisms. J Interferon Cytokine Res. 2009, 29 (9): 581-598. 10.1089/jir.2009.0073.CrossRefPubMed Perdiguero B, Esteban M: The interferon system and vaccinia virus evasion mechanisms. J Interferon Cytokine Res. 2009, 29 (9): 581-598. 10.1089/jir.2009.0073.CrossRefPubMed
44.
go back to reference Gentschev I, Donat U, Hofmann E, Weibel S, Adelfinger M, Raab V, Heisig M, Chen N, Yu YA, Stritzker J, et al: Regression of human prostate tumors and metastases in nude mice following treatment with the recombinant oncolytic vaccinia virus GLV-1h68. J Biomed Biotechnol. 2010, 489759- Gentschev I, Donat U, Hofmann E, Weibel S, Adelfinger M, Raab V, Heisig M, Chen N, Yu YA, Stritzker J, et al: Regression of human prostate tumors and metastases in nude mice following treatment with the recombinant oncolytic vaccinia virus GLV-1h68. J Biomed Biotechnol. 2010, 489759-
45.
go back to reference Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S, Raab V, Sabatino M, Monaco A, Liu H, et al: Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics. 2009, 10: 301-10.1186/1471-2164-10-301.CrossRefPubMedPubMedCentral Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S, Raab V, Sabatino M, Monaco A, Liu H, et al: Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics. 2009, 10: 301-10.1186/1471-2164-10-301.CrossRefPubMedPubMedCentral
Metadata
Title
Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection
Authors
Stephanie Weibel
Viktoria Raab
Yong A Yu
Andrea Worschech
Ena Wang
Francesco M Marincola
Aladar A Szalay
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-68

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine