Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Review

Renal autoregulation and blood pressure management in circulatory shock

Authors: Emiel Hendrik Post, Jean-Louis Vincent

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

The importance of personalized blood pressure management is well recognized. Because renal pressure–flow relationships may vary among patients, understanding how renal autoregulation may influence blood pressure control is essential. However, much remains uncertain regarding the determinants of renal autoregulation in circulatory shock, including the influence of comorbidities and the effects of vasopressor treatment. We review published studies on renal autoregulation relevant to the management of acutely ill patients with shock. We delineate the main signaling pathways of renal autoregulation, discuss how it can be assessed, and describe the renal autoregulatory alterations associated with chronic disease and with shock.
Literature
1.
go back to reference Rigamonti F, Graf G, Merlani P, Bendjelid K. The short-term prognosis of cardiogenic shock can be determined using hemodynamic variables: a retrospective cohort study. Crit Care Med. 2013;41:2484–91.CrossRefPubMed Rigamonti F, Graf G, Merlani P, Bendjelid K. The short-term prognosis of cardiogenic shock can be determined using hemodynamic variables: a retrospective cohort study. Crit Care Med. 2013;41:2484–91.CrossRefPubMed
2.
go back to reference Popovic B, Fay R, Cravoisy-Popovic A, Levy B. Cardiac power index, mean arterial pressure, and simplified acute physiology score II are strong predictors of survival and response to revascularization in cardiogenic shock. Shock. 2014;42:22–6.CrossRefPubMed Popovic B, Fay R, Cravoisy-Popovic A, Levy B. Cardiac power index, mean arterial pressure, and simplified acute physiology score II are strong predictors of survival and response to revascularization in cardiogenic shock. Shock. 2014;42:22–6.CrossRefPubMed
4.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRefPubMed Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRefPubMed
5.
go back to reference Levy B, Bastien O, Bendjelid K, Cariou A, Chouihed T, Combes A, et al. Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5:52.CrossRefPubMed Levy B, Bastien O, Bendjelid K, Cariou A, Chouihed T, Combes A, et al. Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5:52.CrossRefPubMed
6.
go back to reference Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.CrossRefPubMedPubMedCentral Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.CrossRefPubMedPubMedCentral
7.
go back to reference Perez P, Kimmoun A, Blime V, Levy B. Increasing mean arterial pressure in cardiogenic shock secondary to myocardial infarction: effects on hemodynamics and tissue oxygenation. Shock. 2014;41:269–74.CrossRefPubMed Perez P, Kimmoun A, Blime V, Levy B. Increasing mean arterial pressure in cardiogenic shock secondary to myocardial infarction: effects on hemodynamics and tissue oxygenation. Shock. 2014;41:269–74.CrossRefPubMed
8.
go back to reference Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.CrossRefPubMed Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.CrossRefPubMed
9.
go back to reference Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten SE. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011;37:60–7.CrossRefPubMed Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten SE. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011;37:60–7.CrossRefPubMed
10.
go back to reference Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care. 2014;18:653.CrossRefPubMedPubMedCentral Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care. 2014;18:653.CrossRefPubMedPubMedCentral
11.
go back to reference Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRefPubMed Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRefPubMed
13.
go back to reference Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Renal Physiol. 2007;292:F1105–23.CrossRefPubMed Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Renal Physiol. 2007;292:F1105–23.CrossRefPubMed
14.
go back to reference Gupta AK, Udrea A. Beyond linear methods of data analysis: time series analysis and its applications in renal research. Nephron Physiol. 2013;124:14–27.CrossRefPubMed Gupta AK, Udrea A. Beyond linear methods of data analysis: time series analysis and its applications in renal research. Nephron Physiol. 2013;124:14–27.CrossRefPubMed
15.
go back to reference Persson PB, Ehmke H, Nafz B, Kirchheim HR. Sympathetic modulation of renal autoregulation by carotid occlusion in conscious dogs. Am J Physiol Ren Physiol. 1990;258:F364–70.CrossRef Persson PB, Ehmke H, Nafz B, Kirchheim HR. Sympathetic modulation of renal autoregulation by carotid occlusion in conscious dogs. Am J Physiol Ren Physiol. 1990;258:F364–70.CrossRef
16.
go back to reference Semple SJG, De Wardener HE. Effect of increased renal venous pressure on circulatory “autoregulation” of isolated dog kidneys. Circ Res. 1959;7:643–8.CrossRefPubMed Semple SJG, De Wardener HE. Effect of increased renal venous pressure on circulatory “autoregulation” of isolated dog kidneys. Circ Res. 1959;7:643–8.CrossRefPubMed
17.
go back to reference Turkstra E, Braam B, Koomans HA. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J Am Soc Nephrol. 2000;11:847–55.PubMed Turkstra E, Braam B, Koomans HA. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J Am Soc Nephrol. 2000;11:847–55.PubMed
18.
go back to reference Wronski T, Seeliger E, Persson PB, Forner C, Fichtner C, Scheller J, et al. The step response: a method to characterize mechanisms of renal blood flow autoregulation. Am J Physiol Renal Physiol. 2003;285:F758–64.CrossRefPubMed Wronski T, Seeliger E, Persson PB, Forner C, Fichtner C, Scheller J, et al. The step response: a method to characterize mechanisms of renal blood flow autoregulation. Am J Physiol Renal Physiol. 2003;285:F758–64.CrossRefPubMed
19.
go back to reference Just A, Ehmke H, Toktomambetova L, Kirchheim HR. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog. Am J Physiol Renal Physiol. 2001;280:F1062–71.CrossRefPubMed Just A, Ehmke H, Toktomambetova L, Kirchheim HR. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog. Am J Physiol Renal Physiol. 2001;280:F1062–71.CrossRefPubMed
20.
go back to reference Just A, Arendshorst WJ. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback: NO blunts renal myogenic autoregulation via TGF. J Physiol. 2005;569:959–74.CrossRefPubMedPubMedCentral Just A, Arendshorst WJ. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback: NO blunts renal myogenic autoregulation via TGF. J Physiol. 2005;569:959–74.CrossRefPubMedPubMedCentral
21.
go back to reference Cupples WA, Novak P, Novak V, Salevsky FC. Spontaneous blood pressure fluctuations and renal blood flow dynamics. Am J Phys. 1996;270:F82–9. Cupples WA, Novak P, Novak V, Salevsky FC. Spontaneous blood pressure fluctuations and renal blood flow dynamics. Am J Phys. 1996;270:F82–9.
22.
go back to reference Wang X, Loutzenhiser RD, Cupples WA. Frequency modulation of renal myogenic autoregulation by perfusion pressure. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1199–204.CrossRefPubMed Wang X, Loutzenhiser RD, Cupples WA. Frequency modulation of renal myogenic autoregulation by perfusion pressure. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1199–204.CrossRefPubMed
23.
go back to reference Yip KP, Holstein-Rathlou NH. Chaos and non-linear phenomena in renal vascular control. Cardiovasc Res. 1996;31:359–70.CrossRefPubMed Yip KP, Holstein-Rathlou NH. Chaos and non-linear phenomena in renal vascular control. Cardiovasc Res. 1996;31:359–70.CrossRefPubMed
24.
go back to reference Chon KH, Zhong Y, Moore LC, Holstein-Rathlou NH, Cupples WA. Analysis of nonstationarity in renal autoregulation mechanisms using time-varying transfer and coherence functions. Am J Physiol Regul Integr Comp Physiol. 2008;295:R821–8.CrossRefPubMedPubMedCentral Chon KH, Zhong Y, Moore LC, Holstein-Rathlou NH, Cupples WA. Analysis of nonstationarity in renal autoregulation mechanisms using time-varying transfer and coherence functions. Am J Physiol Regul Integr Comp Physiol. 2008;295:R821–8.CrossRefPubMedPubMedCentral
25.
go back to reference Scully CG, Siu KL, Cupples WA, Braam B, Chon KH. Time–frequency approaches for the detection of interactions and temporal properties in renal autoregulation. Ann Biomed Eng. 2013;41:172–84.CrossRefPubMed Scully CG, Siu KL, Cupples WA, Braam B, Chon KH. Time–frequency approaches for the detection of interactions and temporal properties in renal autoregulation. Ann Biomed Eng. 2013;41:172–84.CrossRefPubMed
26.
go back to reference Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32:1553–9.CrossRefPubMed Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32:1553–9.CrossRefPubMed
27.
go back to reference Wan L, Yang N, Hiew C-Y, Schelleman A, Johnson L, May C, et al. An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med. 2008;34:1503–10.CrossRefPubMed Wan L, Yang N, Hiew C-Y, Schelleman A, Johnson L, May C, et al. An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med. 2008;34:1503–10.CrossRefPubMed
28.
go back to reference Berg RM, Plovsing RR, Evans KA, Christiansen CB, Bailey DM, Holstein-Rathlou NH, et al. Lipopolysaccharide infusion enhances dynamic cerebral autoregulation without affecting cerebral oxygen vasoreactivity in healthy volunteers. Crit Care. 2013;17:R238.CrossRefPubMedPubMedCentral Berg RM, Plovsing RR, Evans KA, Christiansen CB, Bailey DM, Holstein-Rathlou NH, et al. Lipopolysaccharide infusion enhances dynamic cerebral autoregulation without affecting cerebral oxygen vasoreactivity in healthy volunteers. Crit Care. 2013;17:R238.CrossRefPubMedPubMedCentral
29.
go back to reference Schneider AG, Johnson L, Goodwin MD, Schelleman A, Bellomo R. Bench-to-bedside review: Contrast enhanced ultrasonography - a promising technique to assess renal perfusion in the ICU. Crit Care 2011;15:157. Schneider AG, Johnson L, Goodwin MD, Schelleman A, Bellomo R. Bench-to-bedside review: Contrast enhanced ultrasonography - a promising technique to assess renal perfusion in the ICU. Crit Care 2011;15:157.
30.
go back to reference Wei K, Le E, Bin JP, Coggins M, Thorpe J, Kaul S. Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol. 2001;37:1135–40.CrossRefPubMed Wei K, Le E, Bin JP, Coggins M, Thorpe J, Kaul S. Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol. 2001;37:1135–40.CrossRefPubMed
31.
go back to reference Prowle JR, Molan MP, Hornsey E, Bellomo R. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury. Crit Care Med. 2012;40:1768–76.CrossRefPubMed Prowle JR, Molan MP, Hornsey E, Bellomo R. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury. Crit Care Med. 2012;40:1768–76.CrossRefPubMed
32.
go back to reference Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P, et al. Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol. 2012;113:307–14.CrossRefPubMed Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P, et al. Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol. 2012;113:307–14.CrossRefPubMed
33.
go back to reference Koch HW, Hansen TG. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates: a 24-h observational study. Paediatr Anaesth. 2016;26:190–8.CrossRefPubMed Koch HW, Hansen TG. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates: a 24-h observational study. Paediatr Anaesth. 2016;26:190–8.CrossRefPubMed
34.
go back to reference Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9.CrossRefPubMedPubMedCentral Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9.CrossRefPubMedPubMedCentral
36.
go back to reference Loutzenhiser R. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol. 2005;290:R1153–67.CrossRef Loutzenhiser R. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol. 2005;290:R1153–67.CrossRef
37.
go back to reference Almeida JB, Saragoça MA, Tavares A, Cezareti ML, Draibe SA, Ramos OL. Severe hypertension induces disturbances of renal autoregulation. Hypertension. 1992;19:II279–83.PubMed Almeida JB, Saragoça MA, Tavares A, Cezareti ML, Draibe SA, Ramos OL. Severe hypertension induces disturbances of renal autoregulation. Hypertension. 1992;19:II279–83.PubMed
38.
go back to reference Kotchen TA, Piering AW, Cowley AW, Grim CE, Gaudet D, Hamet P, et al. Glomerular hyperfiltration in hypertensive African Americans. Hypertension. 2000;35:822–6.CrossRefPubMed Kotchen TA, Piering AW, Cowley AW, Grim CE, Gaudet D, Hamet P, et al. Glomerular hyperfiltration in hypertensive African Americans. Hypertension. 2000;35:822–6.CrossRefPubMed
39.
go back to reference Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA. 2001;285:2719–28.CrossRefPubMed Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA. 2001;285:2719–28.CrossRefPubMed
40.
go back to reference Textor SC, Novick AC, Tarazi RC, Klimas V, Vidt DG, Pohl M. Critical perfusion pressure for renal function in patients with bilateral atherosclerotic renal vascular disease. Ann Intern Med. 1985;102:308–14.CrossRefPubMed Textor SC, Novick AC, Tarazi RC, Klimas V, Vidt DG, Pohl M. Critical perfusion pressure for renal function in patients with bilateral atherosclerotic renal vascular disease. Ann Intern Med. 1985;102:308–14.CrossRefPubMed
41.
go back to reference Takenaka T, Inoue T, Ohno Y, Miyazaki T, Nishiyama A, Ishii N, et al. Elucidating mechanisms underlying altered renal autoregulation in diabetes. Am J Physiol Regul Integr Comp Physiol. 2012;303:R495–504.CrossRefPubMed Takenaka T, Inoue T, Ohno Y, Miyazaki T, Nishiyama A, Ishii N, et al. Elucidating mechanisms underlying altered renal autoregulation in diabetes. Am J Physiol Regul Integr Comp Physiol. 2012;303:R495–504.CrossRefPubMed
42.
go back to reference Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of type 2 diabetes. Am J Physiol Renal Physiol. 2007;293:F1605–13.CrossRefPubMed Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of type 2 diabetes. Am J Physiol Renal Physiol. 2007;293:F1605–13.CrossRefPubMed
43.
go back to reference Christensen PK, Hansen HP, Parving HH. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int. 1997;52:1369–74.CrossRefPubMed Christensen PK, Hansen HP, Parving HH. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int. 1997;52:1369–74.CrossRefPubMed
44.
go back to reference Christensen PK, Lund S, Parving HH. Autoregulated glomerular filtration rate during candesartan treatment in hypertensive type 2 diabetic patients. Kidney Int. 2001;60:1435–42.CrossRefPubMed Christensen PK, Lund S, Parving HH. Autoregulated glomerular filtration rate during candesartan treatment in hypertensive type 2 diabetic patients. Kidney Int. 2001;60:1435–42.CrossRefPubMed
45.
go back to reference Christensen PK, Akram K, Kønig KB, Parving HH. Autoregulation of glomerular filtration rate in patients with type 2 diabetes during isradipine therapy. Diabetes Care. 2003;26:156–62.CrossRefPubMed Christensen PK, Akram K, Kønig KB, Parving HH. Autoregulation of glomerular filtration rate in patients with type 2 diabetes during isradipine therapy. Diabetes Care. 2003;26:156–62.CrossRefPubMed
46.
go back to reference Adams PL, Adams FF, Bell PD, Navar LG. Impaired renal blood flow autoregulation in ischemic acute renal failure. Kidney Int. 1980;18:68–76.CrossRefPubMed Adams PL, Adams FF, Bell PD, Navar LG. Impaired renal blood flow autoregulation in ischemic acute renal failure. Kidney Int. 1980;18:68–76.CrossRefPubMed
47.
go back to reference Matthys E, Patton MK, Osgood RW, Venkatachalam MA, Stein JH. Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int. 1983;23:717–24.CrossRefPubMed Matthys E, Patton MK, Osgood RW, Venkatachalam MA, Stein JH. Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int. 1983;23:717–24.CrossRefPubMed
48.
go back to reference Williams RH, Thomas CE, Navar LG, Evan AP. Hemodynamic and single nephron function during the maintenance phase of ischemic acute renal failure in the dog. Kidney Int. 1981;19:503–15.CrossRefPubMed Williams RH, Thomas CE, Navar LG, Evan AP. Hemodynamic and single nephron function during the maintenance phase of ischemic acute renal failure in the dog. Kidney Int. 1981;19:503–15.CrossRefPubMed
49.
go back to reference Verbeke M, Van de Voorde J, De Ridder L, Lameire N. Influence of ketanserin on experimental loss of renal blood flow autoregulation. Kidney Int. 1998;54:S238–41.CrossRef Verbeke M, Van de Voorde J, De Ridder L, Lameire N. Influence of ketanserin on experimental loss of renal blood flow autoregulation. Kidney Int. 1998;54:S238–41.CrossRef
50.
go back to reference Conger JD, Robinette JB, Hammond WS. Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int. 1991;39:1087–97.CrossRefPubMed Conger JD, Robinette JB, Hammond WS. Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int. 1991;39:1087–97.CrossRefPubMed
51.
go back to reference Conger JD, Schultz MF, Miller F, Robinette JB. Responses to hemorrhagic arterial pressure reduction in different ischemic renal failure models. Kidney Int. 1994;46:318–23.CrossRefPubMed Conger JD, Schultz MF, Miller F, Robinette JB. Responses to hemorrhagic arterial pressure reduction in different ischemic renal failure models. Kidney Int. 1994;46:318–23.CrossRefPubMed
52.
go back to reference Guan Z, Gobé G, Willgoss D, Endre ZH. Renal endothelial dysfunction and impaired autoregulation after ischemia-reperfusion injury result from excess nitric oxide. Am J Physiol Renal Physiol. 2006;291:F619–28.CrossRefPubMed Guan Z, Gobé G, Willgoss D, Endre ZH. Renal endothelial dysfunction and impaired autoregulation after ischemia-reperfusion injury result from excess nitric oxide. Am J Physiol Renal Physiol. 2006;291:F619–28.CrossRefPubMed
53.
go back to reference Schlichtig R, Kramer DJ, Pinsky MR. Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol (1985). 1991;70:169–78.CrossRef Schlichtig R, Kramer DJ, Pinsky MR. Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol (1985). 1991;70:169–78.CrossRef
54.
go back to reference Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio LC. Sympathetic nerve activity and heart rate variability during severe hemorrhagic shock in sheep. Auton Neurosci. 2007;136:43–51.CrossRefPubMed Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio LC. Sympathetic nerve activity and heart rate variability during severe hemorrhagic shock in sheep. Auton Neurosci. 2007;136:43–51.CrossRefPubMed
55.
go back to reference Kelleher SP, Robinette JB, Conger JD. Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol Ren Physiol. 1984;246:F379–86.CrossRef Kelleher SP, Robinette JB, Conger JD. Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol Ren Physiol. 1984;246:F379–86.CrossRef
56.
go back to reference DiBona GF, Sawin LL. Effect of renal denervation on dynamic autoregulation of renal blood flow. Am J Physiol Renal Physiol. 2004;286:F1209–18.CrossRefPubMed DiBona GF, Sawin LL. Effect of renal denervation on dynamic autoregulation of renal blood flow. Am J Physiol Renal Physiol. 2004;286:F1209–18.CrossRefPubMed
57.
go back to reference Burban M, Hamel JF, Tabka M, de La Bourdonnaye M, Duveau A, Mercat A, et al. Renal macro- and microcirculation autoregulatory capacity during early sepsis and norepinephrine infusion in rats. Crit Care. 2013;17:R139.CrossRefPubMedPubMedCentral Burban M, Hamel JF, Tabka M, de La Bourdonnaye M, Duveau A, Mercat A, et al. Renal macro- and microcirculation autoregulatory capacity during early sepsis and norepinephrine infusion in rats. Crit Care. 2013;17:R139.CrossRefPubMedPubMedCentral
58.
go back to reference Nitescu N, DiBona GF, Grimberg E, Guron G. Angiotensin II type 1 receptor antagonism attenuates abnormalities in dynamic renal blood flow autoregulation in rats with endotoxin-induced acute kidney injury. Kidney Blood Press Res. 2010;33:200–8.CrossRefPubMed Nitescu N, DiBona GF, Grimberg E, Guron G. Angiotensin II type 1 receptor antagonism attenuates abnormalities in dynamic renal blood flow autoregulation in rats with endotoxin-induced acute kidney injury. Kidney Blood Press Res. 2010;33:200–8.CrossRefPubMed
59.
go back to reference Evans T, Carpenter A, Kinderman H, Cohen J. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock. 1993;41:77–81.PubMed Evans T, Carpenter A, Kinderman H, Cohen J. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock. 1993;41:77–81.PubMed
60.
go back to reference Wang X, Cupples WA. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats. Can J Physiol Pharmacol. 2001;79:238–45.CrossRefPubMed Wang X, Cupples WA. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats. Can J Physiol Pharmacol. 2001;79:238–45.CrossRefPubMed
61.
go back to reference Just A, Ehmke H, Wittmann U, Kirchheim HR. Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs. Am J Physiol Ren Physiol. 1999;276:F442–9.CrossRef Just A, Ehmke H, Wittmann U, Kirchheim HR. Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs. Am J Physiol Ren Physiol. 1999;276:F442–9.CrossRef
62.
go back to reference Shi Y. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide. Am J Physiol Regul Integr Comp Physiol. 2005;290:R982–91.CrossRefPubMed Shi Y. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide. Am J Physiol Regul Integr Comp Physiol. 2005;290:R982–91.CrossRefPubMed
63.
go back to reference Baumann JE, Persson PB, Ehmke H, Nafz B, Kirchheim HR. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Am J Phys. 1992;263:F208–13. Baumann JE, Persson PB, Ehmke H, Nafz B, Kirchheim HR. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Am J Phys. 1992;263:F208–13.
64.
go back to reference Beierwaltes WH, Sigmon DH, Carretero OA. Endothelium modulates renal blood flow but not autoregulation. Am J Phys. 1992;262:F943–9. Beierwaltes WH, Sigmon DH, Carretero OA. Endothelium modulates renal blood flow but not autoregulation. Am J Phys. 1992;262:F943–9.
65.
go back to reference Majid DS, Williams A, Kadowitz PJ, Navar LG. Renal responses to intra-arterial administration of nitric oxide donor in dogs. Hypertension. 1993;22:535–41.CrossRefPubMed Majid DS, Williams A, Kadowitz PJ, Navar LG. Renal responses to intra-arterial administration of nitric oxide donor in dogs. Hypertension. 1993;22:535–41.CrossRefPubMed
66.
go back to reference Mitrou N, Scully CG, Braam B, Chon KH, Cupples WA. Laser speckle contrast imaging reveals large-scale synchronization of cortical autoregulation dynamics influenced by nitric oxide. Am J Physiol Ren Physiol. 2015;308:F661–70.CrossRef Mitrou N, Scully CG, Braam B, Chon KH, Cupples WA. Laser speckle contrast imaging reveals large-scale synchronization of cortical autoregulation dynamics influenced by nitric oxide. Am J Physiol Ren Physiol. 2015;308:F661–70.CrossRef
67.
go back to reference Moss NG, Kopple TE, Arendshorst WJ. Modulation of the myogenic mechanism:concordant effects of NO synthesis inhibition and o2- dismutation on renal autoregulation in the time and frequency domains. Am J Physiol Ren Physiol. 2016;310:F832–45.CrossRef Moss NG, Kopple TE, Arendshorst WJ. Modulation of the myogenic mechanism:concordant effects of NO synthesis inhibition and o2- dismutation on renal autoregulation in the time and frequency domains. Am J Physiol Ren Physiol. 2016;310:F832–45.CrossRef
68.
go back to reference Wilcox CS. Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol Scand. 2003;179:217–23.CrossRefPubMed Wilcox CS. Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol Scand. 2003;179:217–23.CrossRefPubMed
69.
go back to reference Fellner RC, Cook AK, O’Connor PM, Zhang S, Pollock DM, Inscho EW. High-salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism. Am J Physiol Renal Physiol. 2014;307:F33–40.CrossRefPubMedPubMedCentral Fellner RC, Cook AK, O’Connor PM, Zhang S, Pollock DM, Inscho EW. High-salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism. Am J Physiol Renal Physiol. 2014;307:F33–40.CrossRefPubMedPubMedCentral
70.
go back to reference Racasan S, Turkstra E, Joles JA, Koomans HA, Braam B. Hypoxanthine plus xanthine oxidase causes profound natriuresis without affecting renal blood flow autoregulation. Kidney Int. 2003;64:226–31.CrossRefPubMed Racasan S, Turkstra E, Joles JA, Koomans HA, Braam B. Hypoxanthine plus xanthine oxidase causes profound natriuresis without affecting renal blood flow autoregulation. Kidney Int. 2003;64:226–31.CrossRefPubMed
71.
go back to reference Berthold H, Münter K, Just A, Kirchheim HR, Ehmke H. Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog. Am J Phys. 1999;276:F417–24. Berthold H, Münter K, Just A, Kirchheim HR, Ehmke H. Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog. Am J Phys. 1999;276:F417–24.
72.
go back to reference Shi Y, Lau C, Cupples WA. Interactive modulation of renal myogenic autoregulation by nitric oxide and endothelin acting through ET-B receptors. Am J Physiol Regul Integr Comp Physiol. 2006;292:R354–61.CrossRefPubMed Shi Y, Lau C, Cupples WA. Interactive modulation of renal myogenic autoregulation by nitric oxide and endothelin acting through ET-B receptors. Am J Physiol Regul Integr Comp Physiol. 2006;292:R354–61.CrossRefPubMed
73.
go back to reference Ogawa N, Ono H. Different effects of noradrenaline, angiotensin II and BAY K 8644 on the abolition of autoregulation of renal blood flow by verapamil. Naunyn Schmiedeberg's Arch Pharmacol. 1986;333:445–9.CrossRef Ogawa N, Ono H. Different effects of noradrenaline, angiotensin II and BAY K 8644 on the abolition of autoregulation of renal blood flow by verapamil. Naunyn Schmiedeberg's Arch Pharmacol. 1986;333:445–9.CrossRef
74.
go back to reference Just A, Ehmke H, Wittmann U, Kirchheim HR. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog. J Physiol. 2002;538:167–77.CrossRefPubMedPubMedCentral Just A, Ehmke H, Wittmann U, Kirchheim HR. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog. J Physiol. 2002;538:167–77.CrossRefPubMedPubMedCentral
75.
go back to reference Sorensen CM, Leyssac PP, Skott O, Holstein-Rathlou NH. Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1017–24.CrossRefPubMed Sorensen CM, Leyssac PP, Skott O, Holstein-Rathlou NH. Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1017–24.CrossRefPubMed
76.
go back to reference Kiil F, Kjekshus J, Löyning E. Renal autoregulation during infusion of noradrenaline, angiotensin and acetylcholine. Acta Physiol Scand. 1969;76:10–23.CrossRefPubMed Kiil F, Kjekshus J, Löyning E. Renal autoregulation during infusion of noradrenaline, angiotensin and acetylcholine. Acta Physiol Scand. 1969;76:10–23.CrossRefPubMed
77.
go back to reference Wang X, Ajikobi DO, Salevsky FC, Cupples WA. Impaired myogenic autoregulation in kidneys of Brown Norway rats. Am J Physiol Ren Physiol. 2000;278:F962–9.CrossRef Wang X, Ajikobi DO, Salevsky FC, Cupples WA. Impaired myogenic autoregulation in kidneys of Brown Norway rats. Am J Physiol Ren Physiol. 2000;278:F962–9.CrossRef
78.
go back to reference Martini J, Carpentier B, Negrete AC, Frangos JA, Intaglietta M. Paradoxical hypotension following increased hematocrit and blood viscosity. Am J Physiol Heart Circ Physiol. 2005;289:H2136–43.CrossRefPubMed Martini J, Carpentier B, Negrete AC, Frangos JA, Intaglietta M. Paradoxical hypotension following increased hematocrit and blood viscosity. Am J Physiol Heart Circ Physiol. 2005;289:H2136–43.CrossRefPubMed
79.
go back to reference Vázquez BYS, Martini J, Tsai AG, Johnson PC, Cabrales P, Intaglietta M. The variability of blood pressure due to small changes of hematocrit. Am J Physiol Heart Circ Physiol. 2010;299:H863–7.CrossRefPubMedPubMedCentral Vázquez BYS, Martini J, Tsai AG, Johnson PC, Cabrales P, Intaglietta M. The variability of blood pressure due to small changes of hematocrit. Am J Physiol Heart Circ Physiol. 2010;299:H863–7.CrossRefPubMedPubMedCentral
80.
go back to reference Ogawa Y, Iwasaki K, Aoki K, Shibata S, Kato J, Ogawa S. Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation. Anesth Analg. 2007;105:1389–96.CrossRefPubMed Ogawa Y, Iwasaki K, Aoki K, Shibata S, Kato J, Ogawa S. Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation. Anesth Analg. 2007;105:1389–96.CrossRefPubMed
81.
go back to reference Leone M, Asfar P, Radermacher P, Vincent JL, Martin C. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015;19:101.CrossRefPubMedPubMedCentral Leone M, Asfar P, Radermacher P, Vincent JL, Martin C. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015;19:101.CrossRefPubMedPubMedCentral
Metadata
Title
Renal autoregulation and blood pressure management in circulatory shock
Authors
Emiel Hendrik Post
Jean-Louis Vincent
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-1962-8

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue