Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Short paper

Relation between tag position and degree of visualized cerebrospinal fluid reflux into the lateral ventricles in time-spatial labeling inversion pulse magnetic resonance imaging at the foramen of Monro

Authors: Erik H Middlebrooks, Jeffrey A Bennett, Alissa Old Crow

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

Background

Time-spatial labeling inversion pulse (Time-SLIP) magnetic resonance imaging allows non-invasive visualization of cerebrospinal fluid (CSF) movement. Our study evaluated the sensitivity of the Time-SLIP tag placement on the measurement of CSF reflux from the third ventricle into the lateral ventricles via the foramen of Monro.

Findings

Multiple Time-SLIP MRI scans were obtained in three healthy volunteers (23–55 years of age) evaluating the observed CSF pulsation and reflux from the third ventricle into the lateral ventricles while varying the placement of the tag. Linear regression was performed to evaluate the effects of tag position on the amount of visualized reflux and pulsation. Variation in the position of the tag relative to the plane of the free margin of the septum pellucidum produced a significant inverse variation in the observed reflux into the lateral ventricles (R2 = 0.74). The further the distance of the top (superior edge) of the tag from the plane of the free margin of the septum pellucidum, the less reflux into the lateral ventricles was observed (P = 0.006).

Conclusions

The amount of observed CSF reflux into the lateral ventricles in Time-SLIP MR imaging is dependent on the positioning of the CSF tag with decreasing amount of visualized reflux the further caudal the CSF tag is relative to the free margin of the septum pellucidum.
Appendix
Available only for authorised users
Literature
1.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra111.PubMedCentralPubMedCrossRef Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra111.PubMedCentralPubMedCrossRef
2.
go back to reference Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.PubMedCrossRef Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.PubMedCrossRef
3.
go back to reference Luetmer PH, Huston J, Friedman JA, Dixon GR, Petersen RC, Jack CR, et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 2002;50(3):534–43.PubMed Luetmer PH, Huston J, Friedman JA, Dixon GR, Petersen RC, Jack CR, et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 2002;50(3):534–43.PubMed
4.
go back to reference Bateman GA. The role of altered impedance in the pathophysiology of normal pressure hydrocephalus. Alzheimer’s disease and syringomyelia. Med Hypotheses. 2004;63(6):980–5.PubMedCrossRef Bateman GA. The role of altered impedance in the pathophysiology of normal pressure hydrocephalus. Alzheimer’s disease and syringomyelia. Med Hypotheses. 2004;63(6):980–5.PubMedCrossRef
5.
go back to reference Haughton V, Mardal KA. Spinal fluid biomechanics and imaging: an update for neuroradiologists. Am J Neuroradiol. 2014;35(10):1864–9.PubMedCrossRef Haughton V, Mardal KA. Spinal fluid biomechanics and imaging: an update for neuroradiologists. Am J Neuroradiol. 2014;35(10):1864–9.PubMedCrossRef
6.
go back to reference Gorucu Y, Albayram S, Balci B, Hasiloglu ZI, Yenigul K, Yargic F, et al. Cerebrospinal fluid flow dynamics in patients with multiple sclerosis: a phase contrast magnetic resonance study. Funct Neurol. 2011;26(4):215–22.PubMedCentralPubMed Gorucu Y, Albayram S, Balci B, Hasiloglu ZI, Yenigul K, Yargic F, et al. Cerebrospinal fluid flow dynamics in patients with multiple sclerosis: a phase contrast magnetic resonance study. Funct Neurol. 2011;26(4):215–22.PubMedCentralPubMed
7.
go back to reference Feinberg DA, Mark AS. Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987;163(3):793–9.PubMedCrossRef Feinberg DA, Mark AS. Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987;163(3):793–9.PubMedCrossRef
8.
go back to reference Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65.PubMedCentralPubMedCrossRef Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65.PubMedCentralPubMedCrossRef
9.
go back to reference Yamada S, Miyazaki M, Kanazawa H, Higashi M, Morohoshi Y, Bluml S, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249(2):644–52.PubMedCrossRef Yamada S, Miyazaki M, Kanazawa H, Higashi M, Morohoshi Y, Bluml S, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249(2):644–52.PubMedCrossRef
10.
go back to reference Yamada S. Cerebrospinal fluid physiology: visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging time-spatial inversion pulse method. Croat Med J. 2014;55(4):337–46.PubMedCentralPubMedCrossRef Yamada S. Cerebrospinal fluid physiology: visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging time-spatial inversion pulse method. Croat Med J. 2014;55(4):337–46.PubMedCentralPubMedCrossRef
11.
go back to reference Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, et al. Current and emerging mr imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. Am J Neuroradiol. 2015;36(4):623–30.PubMedCrossRef Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, et al. Current and emerging mr imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. Am J Neuroradiol. 2015;36(4):623–30.PubMedCrossRef
12.
go back to reference Greitz D. Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst. 2007;23(5):487–9.PubMedCentralPubMedCrossRef Greitz D. Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst. 2007;23(5):487–9.PubMedCentralPubMedCrossRef
13.
go back to reference Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1–23.PubMed Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1–23.PubMed
14.
go back to reference Greitz D, Greitz T, Hindmarsh T. A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr Suppl. 1997;86(2):125–32.CrossRef Greitz D, Greitz T, Hindmarsh T. A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr Suppl. 1997;86(2):125–32.CrossRef
15.
go back to reference Greitz D, Hannerz J. A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. Am J Neuroradiol. 1996;17(3):431–8.PubMed Greitz D, Hannerz J. A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. Am J Neuroradiol. 1996;17(3):431–8.PubMed
16.
go back to reference Greitz D, Franck A, Nordell B. On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol. 1993;34(4):321–8.PubMedCrossRef Greitz D, Franck A, Nordell B. On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol. 1993;34(4):321–8.PubMedCrossRef
17.
go back to reference Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.PubMedCentralPubMedCrossRef Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.PubMedCentralPubMedCrossRef
18.
go back to reference Abe K, Ono Y, Yoneyama H, Nishina Y, Aihara Y, Okada Y, et al. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences. Neuroradiol J. 2014;27(3):268–79.PubMed Abe K, Ono Y, Yoneyama H, Nishina Y, Aihara Y, Okada Y, et al. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences. Neuroradiol J. 2014;27(3):268–79.PubMed
19.
go back to reference Sherman JL, Citrin CM, Gangarosa RE, Bowen BJ. The MR appearance of CSF flow in patients with ventriculomegaly. Am J Roentgenol. 1987;148(1):193–9.CrossRef Sherman JL, Citrin CM, Gangarosa RE, Bowen BJ. The MR appearance of CSF flow in patients with ventriculomegaly. Am J Roentgenol. 1987;148(1):193–9.CrossRef
20.
go back to reference Malko JA, Hoffman JC Jr, McClees EC, Davis PC, Braun IF. A phantom study of intracranial CSF signal loss due to pulsatile motion. Am J Neuroradiol. 1988;9(1):83–9.PubMed Malko JA, Hoffman JC Jr, McClees EC, Davis PC, Braun IF. A phantom study of intracranial CSF signal loss due to pulsatile motion. Am J Neuroradiol. 1988;9(1):83–9.PubMed
21.
go back to reference Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg. 2006;104(5):810–9.PubMedCrossRef Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg. 2006;104(5):810–9.PubMedCrossRef
Metadata
Title
Relation between tag position and degree of visualized cerebrospinal fluid reflux into the lateral ventricles in time-spatial labeling inversion pulse magnetic resonance imaging at the foramen of Monro
Authors
Erik H Middlebrooks
Jeffrey A Bennett
Alissa Old Crow
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-015-0011-0

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue