Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2014

Open Access 01-12-2014 | Review

Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence

Authors: Stephen B Hladky, Margery A Barrand

Published in: Fluids and Barriers of the CNS | Issue 1/2014

Login to get access

Abstract

Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Appendix
Available only for authorised users
Literature
1.
go back to reference Woollam DHM, Millen JW: Perivascular spaces of the mammalian central nervous system. Biol Rev Camb Philos Soc. 1954, 29: 251-283. 10.1111/j.1469-185X.1954.tb00597.x. Woollam DHM, Millen JW: Perivascular spaces of the mammalian central nervous system. Biol Rev Camb Philos Soc. 1954, 29: 251-283. 10.1111/j.1469-185X.1954.tb00597.x.
2.
go back to reference Millen J, Woollam D: The Anatomy of the Cerebrospinal Fluid. 1962, Oxford University Press, London Millen J, Woollam D: The Anatomy of the Cerebrospinal Fluid. 1962, Oxford University Press, London
3.
go back to reference Hayman LA, Weathers SW, Kirkpatrick JB: Atlas of cerebrospinal fluid spaces. Clinical Brain Imaging: Normal Structure and Functional Anatomy. Edited by: Hayman LA, Hinck VC. 1992, Mosby-Year Book, St. Louis, 306-328. Hayman LA, Weathers SW, Kirkpatrick JB: Atlas of cerebrospinal fluid spaces. Clinical Brain Imaging: Normal Structure and Functional Anatomy. Edited by: Hayman LA, Hinck VC. 1992, Mosby-Year Book, St. Louis, 306-328.
4.
go back to reference Cserr HF: Physiology of choroid plexus. Physiol Rev. 1971, 51: 273-311.PubMed Cserr HF: Physiology of choroid plexus. Physiol Rev. 1971, 51: 273-311.PubMed
5.
go back to reference Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol. 1975, 13: 247-332.PubMed Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol. 1975, 13: 247-332.PubMed
6.
go back to reference Bradbury MWB: The Concept of a Blood-Brain Barrier. 1979, Wiley, Chichester Bradbury MWB: The Concept of a Blood-Brain Barrier. 1979, Wiley, Chichester
7.
go back to reference Cserr HF, Patlak CS: Regulation of brain volume under isosmotic and anisosmotic conditions. Advances in Comparative and Environmental Physiology. Edited by: Gilles R, Hoffmann EK, Bolis L. 1991, Springer, Heidelberg, 61-80. Cserr HF, Patlak CS: Regulation of brain volume under isosmotic and anisosmotic conditions. Advances in Comparative and Environmental Physiology. Edited by: Gilles R, Hoffmann EK, Bolis L. 1991, Springer, Heidelberg, 61-80.
8.
go back to reference Cserr HF, Patlak CS: Secretion and bulk flow of interstitial fluid. Physiology and Pharmacology of the Blood-Brain Barrier. Edited by: Bradbury MWB. 1992, Springer-Verlag, Berlin, 245-261. [Born GVR, Cuatrecasas P, Herken H (Series Editor): Handbook of Experimental Pharmacology, Vol 103] Cserr HF, Patlak CS: Secretion and bulk flow of interstitial fluid. Physiology and Pharmacology of the Blood-Brain Barrier. Edited by: Bradbury MWB. 1992, Springer-Verlag, Berlin, 245-261. [Born GVR, Cuatrecasas P, Herken H (Series Editor): Handbook of Experimental Pharmacology, Vol 103]
9.
go back to reference Davson H, Segal MB: Physiology of the CSF and Blood-brain Barriers. 1996, CRC Press, Boca Raton Davson H, Segal MB: Physiology of the CSF and Blood-brain Barriers. 1996, CRC Press, Boca Raton
10.
go back to reference Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.PubMed Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.PubMed
11.
go back to reference Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5 (10): 1-32. Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5 (10): 1-32.
12.
go back to reference Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM: Barriers in the brain: a renaissance?. Trends Neurosci. 2008, 31: 279-286. 10.1016/j.tins.2008.03.003.PubMed Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM: Barriers in the brain: a renaissance?. Trends Neurosci. 2008, 31: 279-286. 10.1016/j.tins.2008.03.003.PubMed
13.
go back to reference Liddelow SA: Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS. 2011, 8: 2-10.1186/2045-8118-8-2.PubMedCentralPubMed Liddelow SA: Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS. 2011, 8: 2-10.1186/2045-8118-8-2.PubMedCentralPubMed
14.
go back to reference Abbott NJ: Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.PubMed Abbott NJ: Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.PubMed
15.
go back to reference Damkier HH, Brown PD, Praetorius J: Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013, 93: 1847-1892. 10.1152/physrev.00004.2013.PubMed Damkier HH, Brown PD, Praetorius J: Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013, 93: 1847-1892. 10.1152/physrev.00004.2013.PubMed
16.
go back to reference Pollay M: The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010, 7: 9-10.1186/1743-8454-7-9.PubMedCentralPubMed Pollay M: The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010, 7: 9-10.1186/1743-8454-7-9.PubMedCentralPubMed
17.
go back to reference Brinker T, Stopa EG, Morrison J, Klinge PM: A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014, 11: 10-10.1186/2045-8118-11-10.PubMedCentralPubMed Brinker T, Stopa EG, Morrison J, Klinge PM: A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014, 11: 10-10.1186/2045-8118-11-10.PubMedCentralPubMed
18.
go back to reference O’Donnell ME: Ion and water transport across the blood-brain barrier. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Edited by: Alvarez-Leefmans FJ, Delpire E. 2009, Elsevier Science, Amsterdam, 585-606. O’Donnell ME: Ion and water transport across the blood-brain barrier. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Edited by: Alvarez-Leefmans FJ, Delpire E. 2009, Elsevier Science, Amsterdam, 585-606.
19.
go back to reference Strazielle N, Ghersi-Egea JF: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013, 10: 1473-1491. 10.1021/mp300518e.PubMed Strazielle N, Ghersi-Egea JF: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013, 10: 1473-1491. 10.1021/mp300518e.PubMed
20.
go back to reference Engelhardt B, Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009, 31: 497-511. 10.1007/s00281-009-0177-0.PubMed Engelhardt B, Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009, 31: 497-511. 10.1007/s00281-009-0177-0.PubMed
21.
go back to reference Luissint A-C, Artus C, Glacial F, Ganeshamoorthy K, Couraud P-O: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012, 9: 23-10.1186/2045-8118-9-23.PubMedCentralPubMed Luissint A-C, Artus C, Glacial F, Ganeshamoorthy K, Couraud P-O: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012, 9: 23-10.1186/2045-8118-9-23.PubMedCentralPubMed
22.
go back to reference Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955, 89: 193-200.PubMedCentralPubMed Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955, 89: 193-200.PubMedCentralPubMed
23.
go back to reference Zhang ET, Inman CBE, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990, 170: 111-123.PubMedCentralPubMed Zhang ET, Inman CBE, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990, 170: 111-123.PubMedCentralPubMed
24.
go back to reference Mokri B: The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001, 56: 1746-1748. 10.1212/WNL.56.12.1746.PubMed Mokri B: The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001, 56: 1746-1748. 10.1212/WNL.56.12.1746.PubMed
25.
go back to reference Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES: The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci. 2013, 33: 17553-17559. 10.1523/JNEUROSCI.3258-13.2013.PubMedCentralPubMed Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES: The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci. 2013, 33: 17553-17559. 10.1523/JNEUROSCI.3258-13.2013.PubMedCentralPubMed
26.
go back to reference Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985, 65: 101-148.PubMed Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985, 65: 101-148.PubMed
27.
go back to reference Jones HC, Keep RF: The control of potassium concentration in the cerebrospinal-fluid and brain interstitial fluid of developing rats. J Physiol. 1987, 383: 441-453.PubMedCentralPubMed Jones HC, Keep RF: The control of potassium concentration in the cerebrospinal-fluid and brain interstitial fluid of developing rats. J Physiol. 1987, 383: 441-453.PubMedCentralPubMed
28.
go back to reference Bito LZ, Davson H: Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966, 14: 264-280. 10.1016/0014-4886(66)90114-2.PubMed Bito LZ, Davson H: Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966, 14: 264-280. 10.1016/0014-4886(66)90114-2.PubMed
29.
go back to reference Bradbury MW, Davson H: The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965, 181: 151-174. 10.1113/jphysiol.1965.sp007752.PubMedCentralPubMed Bradbury MW, Davson H: The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965, 181: 151-174. 10.1113/jphysiol.1965.sp007752.PubMedCentralPubMed
30.
go back to reference Oldendorf WH: The blood-brain barrier. Exp Eye Res. 1977, 25 (Suppl): 177-190.PubMed Oldendorf WH: The blood-brain barrier. Exp Eye Res. 1977, 25 (Suppl): 177-190.PubMed
31.
go back to reference Merritt HH, Fremont-Smith F: The Cerebrospinal Fluid. 1937, WB Saunders Co, Philadelphia, London Merritt HH, Fremont-Smith F: The Cerebrospinal Fluid. 1937, WB Saunders Co, Philadelphia, London
32.
go back to reference Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969, 40: 648-677. 10.1083/jcb.40.3.648.PubMedCentralPubMed Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969, 40: 648-677. 10.1083/jcb.40.3.648.PubMedCentralPubMed
33.
go back to reference Brightman MW: Physiology and Pharmacology of the Blood-Brain Barrier. Ultrastructure of Brain Endothelium. Edited by: Bradbury MWB. 1992, Springer-Verlag, Berlin, 1-22. [Born GVR, Cuatrecasas P, Herken H (Series Editor): Handbook of Experimental Pharmacology, Vol. 103] Brightman MW: Physiology and Pharmacology of the Blood-Brain Barrier. Ultrastructure of Brain Endothelium. Edited by: Bradbury MWB. 1992, Springer-Verlag, Berlin, 1-22. [Born GVR, Cuatrecasas P, Herken H (Series Editor): Handbook of Experimental Pharmacology, Vol. 103]
34.
go back to reference Reese TS, Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967, 34: 207-217. 10.1083/jcb.34.1.207.PubMedCentralPubMed Reese TS, Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967, 34: 207-217. 10.1083/jcb.34.1.207.PubMedCentralPubMed
35.
go back to reference Oldendorf WH, Cornford ME, Brown WJ: Large apparent work capability of blood-brain-barrier - study of mitochondrial content of capillary endothelial cells in brain and other tissues of rat. Ann Neurol. 1977, 1: 409-417. 10.1002/ana.410010502.PubMed Oldendorf WH, Cornford ME, Brown WJ: Large apparent work capability of blood-brain-barrier - study of mitochondrial content of capillary endothelial cells in brain and other tissues of rat. Ann Neurol. 1977, 1: 409-417. 10.1002/ana.410010502.PubMed
36.
go back to reference Nabeshima S, Reese TS, Landis DM, Brightman MW: Junctions in the meninges and marginal glia. J Comp Neurol. 1975, 164: 127-169. 10.1002/cne.901640202.PubMed Nabeshima S, Reese TS, Landis DM, Brightman MW: Junctions in the meninges and marginal glia. J Comp Neurol. 1975, 164: 127-169. 10.1002/cne.901640202.PubMed
37.
go back to reference Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967, 15: 160-165. 10.1177/15.3.160.PubMed Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967, 15: 160-165. 10.1177/15.3.160.PubMed
38.
go back to reference Rall DP: Transport through the ependymal linings. Progress in Brain Research. Edited by: Lajtha A, Ford DH. 1968, Elsevier, Amsterdam, 159-172. Rall DP: Transport through the ependymal linings. Progress in Brain Research. Edited by: Lajtha A, Ford DH. 1968, Elsevier, Amsterdam, 159-172.
39.
go back to reference Curran RE, Mosher MB, Owens ES, Fenstermacher JD: Cerebrospinal fluid production rates determined by simultaneous albumin and inulin perfusion. Exp Neurol. 1970, 29: 546-553. 10.1016/0014-4886(70)90079-8.PubMed Curran RE, Mosher MB, Owens ES, Fenstermacher JD: Cerebrospinal fluid production rates determined by simultaneous albumin and inulin perfusion. Exp Neurol. 1970, 29: 546-553. 10.1016/0014-4886(70)90079-8.PubMed
40.
go back to reference Saunders NR, Knott GW, Dziegielewska KM: Barriers in the immature brain. Cell Mol Neurobiol. 2000, 20: 29-40. 10.1023/A:1006991809927.PubMed Saunders NR, Knott GW, Dziegielewska KM: Barriers in the immature brain. Cell Mol Neurobiol. 2000, 20: 29-40. 10.1023/A:1006991809927.PubMed
41.
go back to reference Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013, 10: 1492-1504. 10.1021/mp300495e.PubMedCentralPubMed Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013, 10: 1492-1504. 10.1021/mp300495e.PubMedCentralPubMed
42.
go back to reference Fettiplace R, Haydon DA: Water permeability of lipid membranes. Physiol Rev. 1980, 60: 510-550.PubMed Fettiplace R, Haydon DA: Water permeability of lipid membranes. Physiol Rev. 1980, 60: 510-550.PubMed
43.
go back to reference Guyton AC, Granger HJ, Taylor AE: Interstitial fluid pressure. Physiol Rev. 1971, 51: 527-563.PubMed Guyton AC, Granger HJ, Taylor AE: Interstitial fluid pressure. Physiol Rev. 1971, 51: 527-563.PubMed
44.
go back to reference Granger HJ, Laine GA, Barnes GE, Lewis RE: Dynamics and control of transmicrovascular fluid exchange. Edema. Edited by: Staub NC, Taylor AE. 1984, Raven, New York, 189-228. Granger HJ, Laine GA, Barnes GE, Lewis RE: Dynamics and control of transmicrovascular fluid exchange. Edema. Edited by: Staub NC, Taylor AE. 1984, Raven, New York, 189-228.
45.
go back to reference Levick JR: Flow through interstitium and other fibrous matrices. Q J Exp Physiol. 1987, 72: 409-437. 10.1113/expphysiol.1987.sp003085.PubMed Levick JR: Flow through interstitium and other fibrous matrices. Q J Exp Physiol. 1987, 72: 409-437. 10.1113/expphysiol.1987.sp003085.PubMed
46.
go back to reference Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev. 2008, 88: 1277-1340. 10.1152/physrev.00027.2007.PubMedCentralPubMed Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev. 2008, 88: 1277-1340. 10.1152/physrev.00027.2007.PubMedCentralPubMed
47.
go back to reference Staverman AJ: The theory of measurement of osmotic pressure. Recl Trav Chim Pays Bas. 1951, 70: 344-352. Staverman AJ: The theory of measurement of osmotic pressure. Recl Trav Chim Pays Bas. 1951, 70: 344-352.
48.
go back to reference Kedem O, Katchalsky A: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958, 27: 229-246.PubMed Kedem O, Katchalsky A: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958, 27: 229-246.PubMed
49.
go back to reference Michel CC: Fluid movement through capillary walls. Handbook of Physiology Section 2 The Cardiovascular System Volume 4 Part 1 Microcirculation. Edited by: Renkin EM, Michel CC, Geiger SR. 1984, American Physiological Society, Bethesda, MD, 375-409. Michel CC: Fluid movement through capillary walls. Handbook of Physiology Section 2 The Cardiovascular System Volume 4 Part 1 Microcirculation. Edited by: Renkin EM, Michel CC, Geiger SR. 1984, American Physiological Society, Bethesda, MD, 375-409.
50.
go back to reference Staverman AJ: Non-equilibrium thermodyanamics of membrane processes. Trans Faraday Soc. 1952, 48: 176-185. Staverman AJ: Non-equilibrium thermodyanamics of membrane processes. Trans Faraday Soc. 1952, 48: 176-185.
51.
go back to reference Starling EH: On the absorption of fluids from the connective tissue spaces. J Physiol. 1896, 19: 312-326. 10.1113/jphysiol.1896.sp000596.PubMedCentralPubMed Starling EH: On the absorption of fluids from the connective tissue spaces. J Physiol. 1896, 19: 312-326. 10.1113/jphysiol.1896.sp000596.PubMedCentralPubMed
52.
go back to reference Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls. Handbook of Physiology, Section 2, Circulation. Edited by: Hamilton WF. 1963, American Physiological Society, Washington, D.C, 961-1034. Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls. Handbook of Physiology, Section 2, Circulation. Edited by: Hamilton WF. 1963, American Physiological Society, Washington, D.C, 961-1034.
53.
go back to reference Levick JR, Michel CC: Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010, 87: 198-210. 10.1093/cvr/cvq062.PubMed Levick JR, Michel CC: Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010, 87: 198-210. 10.1093/cvr/cvq062.PubMed
54.
go back to reference Pappenheimer JR: Osmotic reflection coefficients in capillary membrane. Capillary Permeability: the Transfer of Molecules and Ions between Capillary Blood and Tissue. Edited by: Crone C, Lassen NA. 1970, Munksgaard, Academic, Copenhagen, New York, 278-286. Pappenheimer JR: Osmotic reflection coefficients in capillary membrane. Capillary Permeability: the Transfer of Molecules and Ions between Capillary Blood and Tissue. Edited by: Crone C, Lassen NA. 1970, Munksgaard, Academic, Copenhagen, New York, 278-286.
55.
go back to reference Dl Y, Alvarez OA: Water sodium and thiourea transcapillary diffusion in dog heart. Am J Physiol. 1967, 213: 308-314. Dl Y, Alvarez OA: Water sodium and thiourea transcapillary diffusion in dog heart. Am J Physiol. 1967, 213: 308-314.
56.
go back to reference Wolf MB, Watson PD: Measurement of osmotic reflection coefficient for small molecules in cat hindlimbs. Am J Physiol. 1989, 256: H282-H290.PubMed Wolf MB, Watson PD: Measurement of osmotic reflection coefficient for small molecules in cat hindlimbs. Am J Physiol. 1989, 256: H282-H290.PubMed
57.
go back to reference Hill A: Osmosis. Q Rev Biophys. 1979, 12: 67-99. 10.1017/S0033583500002602.PubMed Hill A: Osmosis. Q Rev Biophys. 1979, 12: 67-99. 10.1017/S0033583500002602.PubMed
58.
go back to reference Kim KS, Davis IS, Macpherson PA, Pedley TJ, Hill AE: Osmosis in small pores: a molecular dynamics study of the mechanism of solvent transport. Proc R Soc Lond A Math Phys Sci. 2005, 461: 273-296. 10.1098/rspa.2004.1374. Kim KS, Davis IS, Macpherson PA, Pedley TJ, Hill AE: Osmosis in small pores: a molecular dynamics study of the mechanism of solvent transport. Proc R Soc Lond A Math Phys Sci. 2005, 461: 273-296. 10.1098/rspa.2004.1374.
59.
go back to reference Bulat M, Klarica M: Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure?. Periodicum Biologorum. 2005, 107: 147-152. Bulat M, Klarica M: Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure?. Periodicum Biologorum. 2005, 107: 147-152.
61.
go back to reference MacAulay N, Hamann S, Zeuthen T: Water transport in the brain: role of cotransporters. Neuroscience. 2004, 129: 1031-1044.PubMed MacAulay N, Hamann S, Zeuthen T: Water transport in the brain: role of cotransporters. Neuroscience. 2004, 129: 1031-1044.PubMed
62.
go back to reference Pappenheimer JR, Soto-Rivera A: Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol. 1948, 152: 471-491.PubMed Pappenheimer JR, Soto-Rivera A: Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol. 1948, 152: 471-491.PubMed
63.
go back to reference Flexner LB, Cowie DB, Vosburgh GJ: Studies on capillary permeability with tracer substances. Cold Spring Harb Symp Quant Biol. 1948, 13: 88-98. 10.1101/SQB.1948.013.01.015. Flexner LB, Cowie DB, Vosburgh GJ: Studies on capillary permeability with tracer substances. Cold Spring Harb Symp Quant Biol. 1948, 13: 88-98. 10.1101/SQB.1948.013.01.015.
64.
go back to reference Pappenheimer JR: Passage of molecules through capillary walls. Physiol Rev. 1953, 33: 387-423.PubMed Pappenheimer JR: Passage of molecules through capillary walls. Physiol Rev. 1953, 33: 387-423.PubMed
65.
go back to reference Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol. 2008, 32 (Suppl 1): 43-50.PubMed Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol. 2008, 32 (Suppl 1): 43-50.PubMed
66.
go back to reference Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011, 65: 99-112. 10.1016/j.brainresrev.2010.08.002.PubMed Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011, 65: 99-112. 10.1016/j.brainresrev.2010.08.002.PubMed
67.
go back to reference Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010, 64: 241-262. 10.1016/j.brainresrev.2010.04.006.PubMed Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010, 64: 241-262. 10.1016/j.brainresrev.2010.04.006.PubMed
68.
go back to reference Oreskovic D, Klarica M: Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol. 2011, 94: 238-258. 10.1016/j.pneurobio.2011.05.005.PubMed Oreskovic D, Klarica M: Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol. 2011, 94: 238-258. 10.1016/j.pneurobio.2011.05.005.PubMed
69.
go back to reference Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child’s Nerv Syst. 2012, 28: 55-63. 10.1007/s00381-011-1617-4. Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child’s Nerv Syst. 2012, 28: 55-63. 10.1007/s00381-011-1617-4.
70.
go back to reference Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: “Compensated hyperosmolarity” of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013, 248: 278-289.PubMed Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: “Compensated hyperosmolarity” of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013, 248: 278-289.PubMed
71.
go back to reference Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013, 17: 344-354. 10.1016/j.jbmt.2013.02.002.PubMed Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013, 17: 344-354. 10.1016/j.jbmt.2013.02.002.PubMed
72.
go back to reference Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: O-17 JJVCPE MRI study in knockout mice. Neuroreport. 2014, 25: 39-43.PubMedCentralPubMed Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: O-17 JJVCPE MRI study in knockout mice. Neuroreport. 2014, 25: 39-43.PubMedCentralPubMed
73.
go back to reference Fenstermacher JD, Johnson JA: Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Physiol. 1966, 211: 341-346.PubMed Fenstermacher JD, Johnson JA: Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Physiol. 1966, 211: 341-346.PubMed
74.
go back to reference Fenstermacher JD, Patlak CS: The movements of water and solutes in the brains of mammals. Dynamics of Cerebral Edema. Edited by: Pappius HM, Feindel W. 1976, Springer-Verlag, Berlin, 87-94. Fenstermacher JD, Patlak CS: The movements of water and solutes in the brains of mammals. Dynamics of Cerebral Edema. Edited by: Pappius HM, Feindel W. 1976, Springer-Verlag, Berlin, 87-94.
75.
go back to reference Paulson OB, Hertz MM, Bolwig TG, Lassen NA: Filtration and diffusion of water across blood-brain-barrier in man. Microvasc Res. 1977, 13: 113-123. 10.1016/0026-2862(77)90120-0.PubMed Paulson OB, Hertz MM, Bolwig TG, Lassen NA: Filtration and diffusion of water across blood-brain-barrier in man. Microvasc Res. 1977, 13: 113-123. 10.1016/0026-2862(77)90120-0.PubMed
76.
go back to reference Sweet WH, Selverstone B, Soloway S, Stetten D: Studies of formation, flow and absorption of cerebrospinal fluid. II. Studies with heavy water in the normal man. Surg Forum. 1950, 92: 376-381. Sweet WH, Selverstone B, Soloway S, Stetten D: Studies of formation, flow and absorption of cerebrospinal fluid. II. Studies with heavy water in the normal man. Surg Forum. 1950, 92: 376-381.
77.
go back to reference Sweet WH, Brownell GL, Scholl JA, Bowsher DR, Benda P, Stickley EE: The formation, flow and absorption of cerebrospinal fluid - newer concepts based on studies with isotopes. Res Publ Assoc Res Nerv Ment Dis. 1954, 34: 101-159. Sweet WH, Brownell GL, Scholl JA, Bowsher DR, Benda P, Stickley EE: The formation, flow and absorption of cerebrospinal fluid - newer concepts based on studies with isotopes. Res Publ Assoc Res Nerv Ment Dis. 1954, 34: 101-159.
78.
go back to reference Bering EA: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952, 9: 275-287. 10.3171/jns.1952.9.3.0275.PubMed Bering EA: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952, 9: 275-287. 10.3171/jns.1952.9.3.0275.PubMed
79.
go back to reference Borison HL, Borison R, McCarthy LE: Brain stem penetration by horseradish peroxidase from the cerebrospinal fluid spaces in the cat. Exp Neurol. 1980, 69: 271-289. 10.1016/0014-4886(80)90211-3.PubMed Borison HL, Borison R, McCarthy LE: Brain stem penetration by horseradish peroxidase from the cerebrospinal fluid spaces in the cat. Exp Neurol. 1980, 69: 271-289. 10.1016/0014-4886(80)90211-3.PubMed
80.
go back to reference Greitz D: Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004, 27: 145-165. discussion 166-167PubMed Greitz D: Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004, 27: 145-165. discussion 166-167PubMed
81.
go back to reference Greitz D: Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Child’s Nerv Syst. 2007, 23: 487-489. 10.1007/s00381-007-0303-z. Greitz D: Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Child’s Nerv Syst. 2007, 23: 487-489. 10.1007/s00381-007-0303-z.
82.
go back to reference Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn RD: A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol. 2009, 59: 729-759. 10.1007/s00285-009-0250-2.PubMed Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn RD: A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol. 2009, 59: 729-759. 10.1007/s00285-009-0250-2.PubMed
83.
go back to reference Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011, 115: 159-164. 10.3171/2010.12.JNS10926.PubMed Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011, 115: 159-164. 10.3171/2010.12.JNS10926.PubMed
84.
go back to reference Bateman GA, Napier BD: External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Child’s Nerv Syst. 2011, 27: 2087-2096. 10.1007/s00381-011-1549-z. Bateman GA, Napier BD: External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Child’s Nerv Syst. 2011, 27: 2087-2096. 10.1007/s00381-011-1549-z.
85.
go back to reference Davson H: Dynamic aspects of cerebrospinal fluid. Dev Med Child Neurol Suppl. 1972, 27: 1-16.PubMed Davson H: Dynamic aspects of cerebrospinal fluid. Dev Med Child Neurol Suppl. 1972, 27: 1-16.PubMed
86.
go back to reference McComb JG: Recent research into the nature of cerebrospinal-fluid formation and absorption. 8. J Neurosurg. 1983, 59: 369-383. 10.3171/jns.1983.59.3.0369.PubMed McComb JG: Recent research into the nature of cerebrospinal-fluid formation and absorption. 8. J Neurosurg. 1983, 59: 369-383. 10.3171/jns.1983.59.3.0369.PubMed
87.
go back to reference Kimelberg HK: Water homeostasis in the brain: basic concepts. Neuroscience. 2004, 129: 851-860. 10.1016/j.neuroscience.2004.07.033.PubMed Kimelberg HK: Water homeostasis in the brain: basic concepts. Neuroscience. 2004, 129: 851-860. 10.1016/j.neuroscience.2004.07.033.PubMed
88.
go back to reference Bradbury MW, Cserr HF: Drainage of cerebrospinal fluid and brain interstitial fluid into cervical lymphatics. Experimental Biology of the Lymphatic Circulation. Edited by: Johnston MG. 1985, Elsevier, Amsterdam, Oxford, 355-394. [Research Monographs in Cell and Tissue Physiology, Vol 9] Bradbury MW, Cserr HF: Drainage of cerebrospinal fluid and brain interstitial fluid into cervical lymphatics. Experimental Biology of the Lymphatic Circulation. Edited by: Johnston MG. 1985, Elsevier, Amsterdam, Oxford, 355-394. [Research Monographs in Cell and Tissue Physiology, Vol 9]
89.
go back to reference Gjedde A, Diemer NH: Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. J Cereb Blood Flow Metab. 1985, 5: 282-289. 10.1038/jcbfm.1985.36.PubMed Gjedde A, Diemer NH: Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. J Cereb Blood Flow Metab. 1985, 5: 282-289. 10.1038/jcbfm.1985.36.PubMed
90.
go back to reference Klein B, Kuschinsky W, Schrock H, Vetterlein F: Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol. 1986, 251: H1333-H1340.PubMed Klein B, Kuschinsky W, Schrock H, Vetterlein F: Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol. 1986, 251: H1333-H1340.PubMed
91.
go back to reference Gross PM, Sposito NM, Pettersen SE, Panton DG, Fenstermacher JD: Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior colliculus. J Cereb Blood Flow Metab. 1987, 7: 154-160. 10.1038/jcbfm.1987.38.PubMed Gross PM, Sposito NM, Pettersen SE, Panton DG, Fenstermacher JD: Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior colliculus. J Cereb Blood Flow Metab. 1987, 7: 154-160. 10.1038/jcbfm.1987.38.PubMed
92.
go back to reference Schlageter KE, Molnar P, Lapin GD, Groothuis DR: Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999, 58: 312-328. 10.1006/mvre.1999.2188.PubMed Schlageter KE, Molnar P, Lapin GD, Groothuis DR: Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999, 58: 312-328. 10.1006/mvre.1999.2188.PubMed
93.
go back to reference Rosenberg GA, Kyner WT, Estrada E: Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol. 1980, 238: F42-F49.PubMed Rosenberg GA, Kyner WT, Estrada E: Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol. 1980, 238: F42-F49.PubMed
94.
go back to reference Fenstermacher J, Kaye T: Drug diffusion within the brain. Ann N Y Acad Sci. 1988, 531: 29-39. 10.1111/j.1749-6632.1988.tb31809.x.PubMed Fenstermacher J, Kaye T: Drug diffusion within the brain. Ann N Y Acad Sci. 1988, 531: 29-39. 10.1111/j.1749-6632.1988.tb31809.x.PubMed
95.
go back to reference Nicholson C, Sykova E: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21: 207-215. 10.1016/S0166-2236(98)01261-2.PubMed Nicholson C, Sykova E: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21: 207-215. 10.1016/S0166-2236(98)01261-2.PubMed
96.
go back to reference Verkman AS: Diffusion in the extracellular space in brain and tumors. Phys Biol. 2013, 10: 045003-10.1088/1478-3975/10/4/045003.PubMedCentralPubMed Verkman AS: Diffusion in the extracellular space in brain and tumors. Phys Biol. 2013, 10: 045003-10.1088/1478-3975/10/4/045003.PubMedCentralPubMed
97.
go back to reference Rall DP, Oppelt WW, Patlak CS: Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci. 1962, 1: 43-48. 10.1016/0024-3205(62)90104-2. Rall DP, Oppelt WW, Patlak CS: Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci. 1962, 1: 43-48. 10.1016/0024-3205(62)90104-2.
98.
go back to reference Patlak CS, Fenstermacher JD: Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975, 229: 877-884.PubMed Patlak CS, Fenstermacher JD: Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975, 229: 877-884.PubMed
99.
go back to reference Nicholson C, Phillips JM: Ion diffusion modified by tortuosity and volume fraction in the extracellular micro-environment of the rat cerebellum. J Physiol. 1981, 321: 225-257. 10.1113/jphysiol.1981.sp013981.PubMedCentralPubMed Nicholson C, Phillips JM: Ion diffusion modified by tortuosity and volume fraction in the extracellular micro-environment of the rat cerebellum. J Physiol. 1981, 321: 225-257. 10.1113/jphysiol.1981.sp013981.PubMedCentralPubMed
100.
go back to reference Nicholson C, Tao L: Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J. 1993, 65: 2277-2290. 10.1016/S0006-3495(93)81324-9.PubMedCentralPubMed Nicholson C, Tao L: Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J. 1993, 65: 2277-2290. 10.1016/S0006-3495(93)81324-9.PubMedCentralPubMed
101.
go back to reference Reulen HJ, Graham R, Spatz M, Klatzo I: Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg. 1977, 46: 24-35. 10.3171/jns.1977.46.1.0024.PubMed Reulen HJ, Graham R, Spatz M, Klatzo I: Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg. 1977, 46: 24-35. 10.3171/jns.1977.46.1.0024.PubMed
102.
go back to reference Reulen HJ, Tsuyumu M, Tack A, Fenske AR, Prioleau GR: Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg. 1978, 48: 754-764. 10.3171/jns.1978.48.5.0754.PubMed Reulen HJ, Tsuyumu M, Tack A, Fenske AR, Prioleau GR: Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg. 1978, 48: 754-764. 10.3171/jns.1978.48.5.0754.PubMed
103.
go back to reference Reulen HJ: Bulk flow and diffusion revisited, and clinical applications. Brain Edema XIV. Edited by: Czernicki Z. 2010, Springer-Verlag, Vienna, 3-13. [Acta Neurochirurgica Supplementum Vol 106] Reulen HJ: Bulk flow and diffusion revisited, and clinical applications. Brain Edema XIV. Edited by: Czernicki Z. 2010, Springer-Verlag, Vienna, 3-13. [Acta Neurochirurgica Supplementum Vol 106]
104.
go back to reference Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH: Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994, 91: 2076-2080. 10.1073/pnas.91.6.2076.PubMedCentralPubMed Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH: Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994, 91: 2076-2080. 10.1073/pnas.91.6.2076.PubMedCentralPubMed
105.
go back to reference Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL: High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol. 1994, 266: R292-R305.PubMed Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL: High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol. 1994, 266: R292-R305.PubMed
106.
go back to reference Chen XM, Sarntinoranont M: Biphasic finite element model of solute transport for direct infusion into nervous tissue. Ann Biomed Eng. 2007, 35: 2145-2158. 10.1007/s10439-007-9371-1.PubMed Chen XM, Sarntinoranont M: Biphasic finite element model of solute transport for direct infusion into nervous tissue. Ann Biomed Eng. 2007, 35: 2145-2158. 10.1007/s10439-007-9371-1.PubMed
107.
go back to reference Crone C, Olesen SP: Electrical-resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.PubMed Crone C, Olesen SP: Electrical-resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.PubMed
108.
go back to reference Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62. 10.1113/jphysiol.1990.sp018243.PubMedCentralPubMed Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62. 10.1113/jphysiol.1990.sp018243.PubMedCentralPubMed
109.
go back to reference MacAulay N, Hamann S, Zeuthen T: Chloride transporters as water pumps: elements in a new model of epithelial water transport. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Edited by: Alvarez-Leefmans FJ, Delpire E. 2009, Elsevier Science, Amsterdam, 547-568. MacAulay N, Hamann S, Zeuthen T: Chloride transporters as water pumps: elements in a new model of epithelial water transport. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Edited by: Alvarez-Leefmans FJ, Delpire E. 2009, Elsevier Science, Amsterdam, 547-568.
110.
go back to reference Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974, 139: 505-508.PubMed Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974, 139: 505-508.PubMed
111.
go back to reference Milhorat TH: Third circulation revisited. J Neurosurg. 1975, 42: 628-645. 10.3171/jns.1975.42.6.0628.PubMed Milhorat TH: Third circulation revisited. J Neurosurg. 1975, 42: 628-645. 10.3171/jns.1975.42.6.0628.PubMed
112.
go back to reference Milhorat TH: Cerebrospinal Fluid and the Brain Edemas. 1987, Neuroscience Society of New York, New York Milhorat TH: Cerebrospinal Fluid and the Brain Edemas. 1987, Neuroscience Society of New York, New York
113.
go back to reference Scarff JE: Treatment of nonobstructive (communicating) hydrocephalus by endoscopic cauterization of choroid plexuses. J Neurosurg. 1970, 33: 1-18. 10.3171/jns.1970.33.1.0001.PubMed Scarff JE: Treatment of nonobstructive (communicating) hydrocephalus by endoscopic cauterization of choroid plexuses. J Neurosurg. 1970, 33: 1-18. 10.3171/jns.1970.33.1.0001.PubMed
114.
go back to reference Warf BC: Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005, 103: 475-481.PubMed Warf BC: Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005, 103: 475-481.PubMed
115.
go back to reference Warf BC: The impact of combined endoscopic third ventriculostomy and choroid plexus cauterization on the management of pediatric hydrocephalus in developing countries. World Neurosurg. 2013, 79 (S23): e13-e15.PubMed Warf BC: The impact of combined endoscopic third ventriculostomy and choroid plexus cauterization on the management of pediatric hydrocephalus in developing countries. World Neurosurg. 2013, 79 (S23): e13-e15.PubMed
116.
go back to reference Zhu XL, Di Rocco C: Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Child’s Nerv Syst. 2013, 29: 35-42. 10.1007/s00381-012-1960-0. Zhu XL, Di Rocco C: Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Child’s Nerv Syst. 2013, 29: 35-42. 10.1007/s00381-012-1960-0.
117.
go back to reference Pollay M: Overview of the CSF dual outflow system. Hydrocephalus. Edited by: Aygok GA, Rekate HL. 2012, Springer-Verlag, Vienna, 47-50. [Acta Neurochirurgica Supplementum, Vol 113] Pollay M: Overview of the CSF dual outflow system. Hydrocephalus. Edited by: Aygok GA, Rekate HL. 2012, Springer-Verlag, Vienna, 47-50. [Acta Neurochirurgica Supplementum, Vol 113]
118.
go back to reference Bradbury MW, Cole DF: The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol. 1980, 299: 353-365. 10.1113/jphysiol.1980.sp013129.PubMedCentralPubMed Bradbury MW, Cole DF: The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol. 1980, 299: 353-365. 10.1113/jphysiol.1980.sp013129.PubMedCentralPubMed
119.
go back to reference Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981, 240: F329-F336.PubMed Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981, 240: F329-F336.PubMed
120.
go back to reference Bradbury MWB, Westrop RJ: Factors influencing exit of substances from cerebrospinal-fluid into deep cervical lymph of the rabbit. J Physiol. 1983, 339: 519-534. 10.1113/jphysiol.1983.sp014731.PubMedCentralPubMed Bradbury MWB, Westrop RJ: Factors influencing exit of substances from cerebrospinal-fluid into deep cervical lymph of the rabbit. J Physiol. 1983, 339: 519-534. 10.1113/jphysiol.1983.sp014731.PubMedCentralPubMed
121.
go back to reference Kida S, Pantazis A, Weller RO: CSF drains directly from the subarachnoid space into nasal lymphatics in the rat - anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993, 19: 480-488. 10.1111/j.1365-2990.1993.tb00476.x.PubMed Kida S, Pantazis A, Weller RO: CSF drains directly from the subarachnoid space into nasal lymphatics in the rat - anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993, 19: 480-488. 10.1111/j.1365-2990.1993.tb00476.x.PubMed
122.
go back to reference Johnston M, Papaiconomou C: Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002, 17: 227-230.PubMed Johnston M, Papaiconomou C: Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002, 17: 227-230.PubMed
123.
go back to reference Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M: Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Child’s Nerv Syst. 2004, 20: 29-36. 10.1007/s00381-003-0840-z. Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M: Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Child’s Nerv Syst. 2004, 20: 29-36. 10.1007/s00381-003-0840-z.
124.
go back to reference Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D: Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004, 1: 2-10.1186/1743-8454-1-2.PubMedCentralPubMed Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D: Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004, 1: 2-10.1186/1743-8454-1-2.PubMedCentralPubMed
125.
go back to reference Johnston M, Zakharov A, Koh L, Armstrong D: Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol. 2005, 31: 632-640. 10.1111/j.1365-2990.2005.00679.x.PubMed Johnston M, Zakharov A, Koh L, Armstrong D: Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol. 2005, 31: 632-640. 10.1111/j.1365-2990.2005.00679.x.PubMed
126.
go back to reference Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M: Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol. 2006, 291: R1383-R1389. Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M: Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol. 2006, 291: R1383-R1389.
127.
go back to reference Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD: Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014, 11: 12-10.1186/2045-8118-11-12.PubMedCentralPubMed Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD: Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014, 11: 12-10.1186/2045-8118-11-12.PubMedCentralPubMed
128.
go back to reference Ekstedt J: CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry. 1977, 40: 105-119. 10.1136/jnnp.40.2.105.PubMedCentralPubMed Ekstedt J: CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry. 1977, 40: 105-119. 10.1136/jnnp.40.2.105.PubMedCentralPubMed
129.
go back to reference Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978, 41: 345-353. 10.1136/jnnp.41.4.345.PubMedCentralPubMed Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978, 41: 345-353. 10.1136/jnnp.41.4.345.PubMedCentralPubMed
130.
go back to reference Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996, 75: 1271-1288. 10.1016/0306-4522(96)00281-3.PubMed Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996, 75: 1271-1288. 10.1016/0306-4522(96)00281-3.PubMed
131.
go back to reference Nagaraja TN, Patel P, Gorski M, Gorevic PD, Patlak CS, Fenstermacher JD: In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res. 2005, 2: 5-10.1186/1743-8454-2-5.PubMedCentralPubMed Nagaraja TN, Patel P, Gorski M, Gorevic PD, Patlak CS, Fenstermacher JD: In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res. 2005, 2: 5-10.1186/1743-8454-2-5.PubMedCentralPubMed
132.
go back to reference Cserr HF, Cooper DN, Suri PK, Patlak CS: Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981, 240: F319-F328.PubMed Cserr HF, Cooper DN, Suri PK, Patlak CS: Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981, 240: F319-F328.PubMed
133.
go back to reference Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962, 203: 775-781.PubMed Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962, 203: 775-781.PubMed
134.
go back to reference Milhorat TH: Choroid plexus and cerebrospinal fluid production. Science. 1969, 166: 1514-1516. 10.1126/science.166.3912.1514.PubMed Milhorat TH: Choroid plexus and cerebrospinal fluid production. Science. 1969, 166: 1514-1516. 10.1126/science.166.3912.1514.PubMed
135.
go back to reference Milhorat TH: Hydrocephalus and the Cerebrospinal Fluid. 1972, Williams & Wilkins, Baltimore Milhorat TH: Hydrocephalus and the Cerebrospinal Fluid. 1972, Williams & Wilkins, Baltimore
136.
go back to reference Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038.PubMed Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038.PubMed
137.
go back to reference Curl FD, Pollay M: Transport of water and electrolytes between brain and ventricular fluid in the rabbit. Exp Neurol. 1968, 20: 558-574. 10.1016/0014-4886(68)90109-X.PubMed Curl FD, Pollay M: Transport of water and electrolytes between brain and ventricular fluid in the rabbit. Exp Neurol. 1968, 20: 558-574. 10.1016/0014-4886(68)90109-X.PubMed
138.
go back to reference Cserr HF, Cooper DN, Milhorat TH: Flow of cerebral interstitial fluid as indicated by removal of extracellular markers from rat caudate-nucleus. Exp Eye Res. 1977, 25: 461-473.PubMed Cserr HF, Cooper DN, Milhorat TH: Flow of cerebral interstitial fluid as indicated by removal of extracellular markers from rat caudate-nucleus. Exp Eye Res. 1977, 25: 461-473.PubMed
139.
go back to reference Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-F844.PubMed Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-F844.PubMed
140.
go back to reference Yamada S, DePasquale M, Patlak CS, Cserr HF: Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol. 1991, 261: H1197-H1204.PubMed Yamada S, DePasquale M, Patlak CS, Cserr HF: Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol. 1991, 261: H1197-H1204.PubMed
141.
go back to reference Curry F-RE, Renkin EM, Michel CC, Geiger SR: Mechanics and thermodynamics of transcapillary exchange. Handbook of Physiology Section 2 The Cardiovascular System. Volume 4 Part 1 Microcirculation. 1984, American Physiological Society, Bethesda, MD, 309-374. Curry F-RE, Renkin EM, Michel CC, Geiger SR: Mechanics and thermodynamics of transcapillary exchange. Handbook of Physiology Section 2 The Cardiovascular System. Volume 4 Part 1 Microcirculation. 1984, American Physiological Society, Bethesda, MD, 309-374.
142.
go back to reference Groothuis DR, Vavra MW, Schlageter KE, Kang EW-Y, Itskovich AC, Hertzler S, Allen CV, Lipton HL: Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab. 2007, 27: 43-56. 10.1038/sj.jcbfm.9600315.PubMed Groothuis DR, Vavra MW, Schlageter KE, Kang EW-Y, Itskovich AC, Hertzler S, Allen CV, Lipton HL: Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab. 2007, 27: 43-56. 10.1038/sj.jcbfm.9600315.PubMed
143.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012, 4: 147ra111-PubMedCentralPubMed Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012, 4: 147ra111-PubMedCentralPubMed
144.
go back to reference Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986, 65: 316-325. 10.3171/jns.1986.65.3.0316.PubMed Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986, 65: 316-325. 10.3171/jns.1986.65.3.0316.PubMed
145.
go back to reference Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalized drainage of interstitial fluid and cerebrospinal-fluid from the rat-brain. Acta Neuropathol. 1992, 83: 233-239. 10.1007/BF00296784.PubMed Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalized drainage of interstitial fluid and cerebrospinal-fluid from the rat-brain. Acta Neuropathol. 1992, 83: 233-239. 10.1007/BF00296784.PubMed
146.
go back to reference Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao LZ, Betensky RA, Frosch MP, Greenberg SM, Bacskai BJ: Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol. 2013, 126: 353-364. 10.1007/s00401-013-1145-2.PubMed Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao LZ, Betensky RA, Frosch MP, Greenberg SM, Bacskai BJ: Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol. 2013, 126: 353-364. 10.1007/s00401-013-1145-2.PubMed
147.
go back to reference Fenstermacher J: Comment after paper by Katzman. Symposium on the Blood-Brain Barrier Wates Foundation; Oxford. Edited by: Coxon RV. 1970, Truex, Oxford, 166- Fenstermacher J: Comment after paper by Katzman. Symposium on the Blood-Brain Barrier Wates Foundation; Oxford. Edited by: Coxon RV. 1970, Truex, Oxford, 166-
148.
go back to reference Levin VA, Fenstermacher JD, Patlak CS: Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am J Physiol. 1970, 219: 1528-1533.PubMed Levin VA, Fenstermacher JD, Patlak CS: Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am J Physiol. 1970, 219: 1528-1533.PubMed
149.
go back to reference Levin E, Sisson WB: The penetration of radiolabeled substances into rabbit brain from subarachnoid space. Brain Res. 1972, 41: 145-153. 10.1016/0006-8993(72)90622-1.PubMed Levin E, Sisson WB: The penetration of radiolabeled substances into rabbit brain from subarachnoid space. Brain Res. 1972, 41: 145-153. 10.1016/0006-8993(72)90622-1.PubMed
150.
go back to reference Milhorat TH: Some observations on circulation of phenosulfonpthalein in cerebrospinal fluid - normal flow and flow in hydrocephalus. J Neurosurg. 1970, 32: 522-528. 10.3171/jns.1970.32.5.0522.PubMed Milhorat TH: Some observations on circulation of phenosulfonpthalein in cerebrospinal fluid - normal flow and flow in hydrocephalus. J Neurosurg. 1970, 32: 522-528. 10.3171/jns.1970.32.5.0522.PubMed
151.
go back to reference Pape LG, Katzman R: K42 distribution in brain during simultaneous ventriculocisternal and subarachnoid perfusion. Brain Res. 1972, 38: 49-69. 10.1016/0006-8993(72)90589-6.PubMed Pape LG, Katzman R: K42 distribution in brain during simultaneous ventriculocisternal and subarachnoid perfusion. Brain Res. 1972, 38: 49-69. 10.1016/0006-8993(72)90589-6.PubMed
152.
go back to reference Bradbury MW, Segal MB, Wilson J: Transport of potassium at the blood-brain barrier. J Physiol. 1972, 221: 617-632. 10.1113/jphysiol.1972.sp009771.PubMedCentralPubMed Bradbury MW, Segal MB, Wilson J: Transport of potassium at the blood-brain barrier. J Physiol. 1972, 221: 617-632. 10.1113/jphysiol.1972.sp009771.PubMedCentralPubMed
153.
go back to reference Weller RO, Djuanda E, Yow H-Y, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009, 117: 1-14. 10.1007/s00401-008-0457-0.PubMed Weller RO, Djuanda E, Yow H-Y, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009, 117: 1-14. 10.1007/s00401-008-0457-0.PubMed
154.
go back to reference Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6.PubMed Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6.PubMed
155.
go back to reference Wagner HJ, Pilgrim C, Brandl J: Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 1974, 27: 299-315. 10.1007/BF00690695.PubMed Wagner HJ, Pilgrim C, Brandl J: Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 1974, 27: 299-315. 10.1007/BF00690695.PubMed
156.
go back to reference Rennels ML, Blaumanis OR, Grady PA: Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990, 52: 431-439.PubMed Rennels ML, Blaumanis OR, Grady PA: Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990, 52: 431-439.PubMed
157.
go back to reference Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991, 545: 103-113. 10.1016/0006-8993(91)91275-6.PubMed Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991, 545: 103-113. 10.1016/0006-8993(91)91275-6.PubMed
158.
go back to reference Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K: The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006, 14: 69-78. 10.1016/j.ymthe.2006.02.018.PubMedCentralPubMed Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K: The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006, 14: 69-78. 10.1016/j.ymthe.2006.02.018.PubMedCentralPubMed
159.
go back to reference Mollanji R, Bozanovic-Sosic R, Silver I, Li B, Kim C, Midha R, Johnston M: Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol. 2001, 280: R1573-R1581. Mollanji R, Bozanovic-Sosic R, Silver I, Li B, Kim C, Midha R, Johnston M: Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol. 2001, 280: R1573-R1581.
160.
go back to reference Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG: Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol. 2002, 282: R1593-R1599. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG: Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol. 2002, 282: R1593-R1599.
161.
go back to reference Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008, 34: 131-144. 10.1111/j.1365-2990.2007.00926.x.PubMed Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008, 34: 131-144. 10.1111/j.1365-2990.2007.00926.x.PubMed
162.
go back to reference Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE: Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol. 1998, 153: 725-733. 10.1016/S0002-9440(10)65616-7.PubMedCentralPubMed Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE: Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol. 1998, 153: 725-733. 10.1016/S0002-9440(10)65616-7.PubMedCentralPubMed
163.
go back to reference Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol. 2003, 29: 106-117. 10.1046/j.1365-2990.2003.00424.x.PubMed Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol. 2003, 29: 106-117. 10.1046/j.1365-2990.2003.00424.x.PubMed
164.
go back to reference Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013, 39: 593-611. 10.1111/nan.12042.PubMed Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013, 39: 593-611. 10.1111/nan.12042.PubMed
165.
go back to reference Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO: Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006, 238: 962-974. 10.1016/j.jtbi.2005.07.005.PubMed Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO: Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006, 238: 962-974. 10.1016/j.jtbi.2005.07.005.PubMed
166.
go back to reference Weller RO, Subash M, Preston SD, Mazanti I, Carare RO: Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 2008, 18: 253-266.PubMed Weller RO, Subash M, Preston SD, Mazanti I, Carare RO: Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 2008, 18: 253-266.PubMed
167.
go back to reference Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JAR, Carare RO: Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon 4 allele. PLoS One. 2012, 7: e41636-10.1371/journal.pone.0041636.PubMedCentralPubMed Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JAR, Carare RO: Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon 4 allele. PLoS One. 2012, 7: e41636-10.1371/journal.pone.0041636.PubMedCentralPubMed
168.
go back to reference Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO: Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid- from the mouse brain. Aging Cell. 2013, 12: 224-236. 10.1111/acel.12045.PubMed Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO: Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid- from the mouse brain. Aging Cell. 2013, 12: 224-236. 10.1111/acel.12045.PubMed
169.
go back to reference Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987, 163: 793-799. 10.1148/radiology.163.3.3575734.PubMed Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987, 163: 793-799. 10.1148/radiology.163.3.3575734.PubMed
170.
go back to reference Enzmann DR, Pelc NJ: Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology. 1991, 178: 467-474. 10.1148/radiology.178.2.1987610.PubMed Enzmann DR, Pelc NJ: Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology. 1991, 178: 467-474. 10.1148/radiology.178.2.1987610.PubMed
171.
go back to reference Enzmann DR, Pelc NJ: Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol. 1993, 14: 1301-1307. discussion 1309-1310PubMed Enzmann DR, Pelc NJ: Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol. 1993, 14: 1301-1307. discussion 1309-1310PubMed
172.
go back to reference Baledent O, Gondry-Jouet C, Meyer M-E, De Marco G, Le Gars D, Henry-Feugeas M-C, Idy-Peretti I: Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol. 2004, 39: 45-55. 10.1097/01.rli.0000100892.87214.49.PubMed Baledent O, Gondry-Jouet C, Meyer M-E, De Marco G, Le Gars D, Henry-Feugeas M-C, Idy-Peretti I: Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol. 2004, 39: 45-55. 10.1097/01.rli.0000100892.87214.49.PubMed
173.
go back to reference Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast - normal values, repeatability and CO(2) reactivity. Intracranial Pressure and Brain Monitoring XIII: Mechanisms and Treatment. Edited by: Manley G, Hemphill C, Stiver S. 2008, Springer, Vienna, 263-270. [Acta Neurochirurgica. Supplement, Vol. 102] Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast - normal values, repeatability and CO(2) reactivity. Intracranial Pressure and Brain Monitoring XIII: Mechanisms and Treatment. Edited by: Manley G, Hemphill C, Stiver S. 2008, Springer, Vienna, 263-270. [Acta Neurochirurgica. Supplement, Vol. 102]
174.
go back to reference Bering EA, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963, 20: 1050-1063. 10.3171/jns.1963.20.12.1050.PubMed Bering EA, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963, 20: 1050-1063. 10.3171/jns.1963.20.12.1050.PubMed
175.
go back to reference Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett. 2002, 327: 103-106. 10.1016/S0304-3940(02)00395-6.PubMed Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett. 2002, 327: 103-106. 10.1016/S0304-3940(02)00395-6.PubMed
176.
go back to reference Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience. 2009, 158: 1397-1405. 10.1016/j.neuroscience.2008.11.041.PubMed Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience. 2009, 158: 1397-1405. 10.1016/j.neuroscience.2008.11.041.PubMed
177.
go back to reference Dandy WE, Blackfan KD: Internal hydrocephalus - an experimental, clinical and pathological study. Am J Dis Child. 1914, 8: 406-482. Dandy WE, Blackfan KD: Internal hydrocephalus - an experimental, clinical and pathological study. Am J Dis Child. 1914, 8: 406-482.
178.
go back to reference Milhorat TH, Clark RG, Hammock MK: Experimental hydrocephalus. 2. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg. 1970, 32: 390-399. 10.3171/jns.1970.32.4.0390.PubMed Milhorat TH, Clark RG, Hammock MK: Experimental hydrocephalus. 2. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg. 1970, 32: 390-399. 10.3171/jns.1970.32.4.0390.PubMed
179.
go back to reference James AE, Novak G, Bahr AL, Burns B: Production of cerebrospinal-fluid in experimental communicating hydrocephalus. Exp Brain Res. 1977, 27: 553-557.PubMed James AE, Novak G, Bahr AL, Burns B: Production of cerebrospinal-fluid in experimental communicating hydrocephalus. Exp Brain Res. 1977, 27: 553-557.PubMed
180.
go back to reference Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994, 36: 210-215. 10.1007/BF00588133.PubMed Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994, 36: 210-215. 10.1007/BF00588133.PubMed
181.
go back to reference Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992, 183: 395-405. 10.1148/radiology.183.2.1561340.PubMed Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992, 183: 395-405. 10.1148/radiology.183.2.1561340.PubMed
182.
go back to reference Baledent O: Imaging of the cerebrospinal fluid circulation. Adult Hydrocephalus. Edited by: Rigamonti D. 2014, Cambridge University Press, Cambridge, 121-138. Baledent O: Imaging of the cerebrospinal fluid circulation. Adult Hydrocephalus. Edited by: Rigamonti D. 2014, Cambridge University Press, Cambridge, 121-138.
183.
go back to reference Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst. 1999, 15: 461-467. 10.1007/s003810050440. Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst. 1999, 15: 461-467. 10.1007/s003810050440.
184.
go back to reference Bateman GA: Correction to “External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation”. Child’s Nerv Syst. 2011, 27: 2033-2034. 10.1007/s00381-011-1610-y. Bateman GA: Correction to “External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation”. Child’s Nerv Syst. 2011, 27: 2033-2034. 10.1007/s00381-011-1610-y.
185.
go back to reference Strecker EP, James AE: Evaluation of cerebrospinal-fluid flow and absorption - clinical and experimental studies. Neuroradiology. 1973, 6: 200-205. 10.1007/BF00335324.PubMed Strecker EP, James AE: Evaluation of cerebrospinal-fluid flow and absorption - clinical and experimental studies. Neuroradiology. 1973, 6: 200-205. 10.1007/BF00335324.PubMed
186.
go back to reference James AE, Strecker EP, Sperber E, Flor WJ, Merz T, Burns B: An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement. Radiology. 1974, 111: 143-146. 10.1148/111.1.143.PubMed James AE, Strecker EP, Sperber E, Flor WJ, Merz T, Burns B: An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement. Radiology. 1974, 111: 143-146. 10.1148/111.1.143.PubMed
187.
go back to reference Strecker EP, Kelley JET, Merz T, James AE: Transventricular albumin absorption in communicating hydrocephalus - semiquantitative analysis of periventricular extracellular-space utilizing autoradiography. Arch Psychiatr Nervenkr. 1974, 218: 369-377. 10.1007/BF00342579.PubMed Strecker EP, Kelley JET, Merz T, James AE: Transventricular albumin absorption in communicating hydrocephalus - semiquantitative analysis of periventricular extracellular-space utilizing autoradiography. Arch Psychiatr Nervenkr. 1974, 218: 369-377. 10.1007/BF00342579.PubMed
188.
go back to reference James AE, Flor WJ, Novak GR, Strecker EP, Burns B, Epstein M: Experimental hydrocephalus. Exp Eye Res. 1977, 25 (Suppl): 435-459.PubMed James AE, Flor WJ, Novak GR, Strecker EP, Burns B, Epstein M: Experimental hydrocephalus. Exp Eye Res. 1977, 25 (Suppl): 435-459.PubMed
189.
go back to reference Maki Y, Kokubo Y, Nose T, Yoshii Y: Some characteristic findings of isotope cisternograms in children. J Neurosurg. 1976, 45: 56-59. 10.3171/jns.1976.45.1.0056.PubMed Maki Y, Kokubo Y, Nose T, Yoshii Y: Some characteristic findings of isotope cisternograms in children. J Neurosurg. 1976, 45: 56-59. 10.3171/jns.1976.45.1.0056.PubMed
190.
go back to reference Blomquist HK, Sundin S, Ekstedt J: Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986, 49: 536-548. 10.1136/jnnp.49.5.536.PubMedCentralPubMed Blomquist HK, Sundin S, Ekstedt J: Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986, 49: 536-548. 10.1136/jnnp.49.5.536.PubMedCentralPubMed
191.
go back to reference Milhorat TH, Mosher MB, Hammock MK, Murphy CF: Evidence for choroid-plexus absorption in hydrocephalus. N Engl J Med. 1970, 283: 286-289. 10.1056/NEJM197008062830604.PubMed Milhorat TH, Mosher MB, Hammock MK, Murphy CF: Evidence for choroid-plexus absorption in hydrocephalus. N Engl J Med. 1970, 283: 286-289. 10.1056/NEJM197008062830604.PubMed
192.
go back to reference Wislocki GB, Putnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat. 1921, 29: 313-320. 10.1002/aja.1000290302. Wislocki GB, Putnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat. 1921, 29: 313-320. 10.1002/aja.1000290302.
193.
go back to reference Eisenberg HM, McLennan JE, Welch K: Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg. 1974, 41: 20-28. 10.3171/jns.1974.41.1.0020.PubMed Eisenberg HM, McLennan JE, Welch K: Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg. 1974, 41: 20-28. 10.3171/jns.1974.41.1.0020.PubMed
194.
go back to reference Welch K, Sadler K: Permeability of the choroid plexus of the rabbit to several solutes. Am J Physiol. 1966, 210: 652-660.PubMed Welch K, Sadler K: Permeability of the choroid plexus of the rabbit to several solutes. Am J Physiol. 1966, 210: 652-660.PubMed
195.
go back to reference Wåhlin A, Ambarki K, Hauksson J, Birgander R, Malm J, Eklund A: Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging. 2012, 35: 1055-1062. 10.1002/jmri.23527.PubMed Wåhlin A, Ambarki K, Hauksson J, Birgander R, Malm J, Eklund A: Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging. 2012, 35: 1055-1062. 10.1002/jmri.23527.PubMed
196.
go back to reference Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F: Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992, 34: 370-380. 10.1007/BF00596493.PubMed Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F: Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992, 34: 370-380. 10.1007/BF00596493.PubMed
197.
go back to reference Piechnik SK, Jezzard P, Byrne JV, Summers PE: Physiological component in background flow velocity in MR phase contrast measurements. Proc Intl Soc Mag Reson Med. 2008, 16: 2235- Piechnik SK, Jezzard P, Byrne JV, Summers PE: Physiological component in background flow velocity in MR phase contrast measurements. Proc Intl Soc Mag Reson Med. 2008, 16: 2235-
198.
go back to reference James AE, Flor WJ, Merz T, Strecker EP, Burns B: A pathophysiologic mechanism for ventricular entry of radiopharmaceutical and possible relation to chronic communicating hydrocephalus. Am J Roentgenol Radium Ther. 1974, 122: 38-43. 10.2214/ajr.122.1.38. James AE, Flor WJ, Merz T, Strecker EP, Burns B: A pathophysiologic mechanism for ventricular entry of radiopharmaceutical and possible relation to chronic communicating hydrocephalus. Am J Roentgenol Radium Ther. 1974, 122: 38-43. 10.2214/ajr.122.1.38.
200.
go back to reference Konnikova M: Goodnight. Sleep clean. New York Times. 2014, New York Times Company, New York, 12 January 2014 SR1 Konnikova M: Goodnight. Sleep clean. New York Times. 2014, New York Times Company, New York, 12 January 2014 SR1
201.
202.
go back to reference Iliff JJ, Wang MH, Zeppenfeld DM, Venkataraman A, Plog BA, Liao YH, Deane R, Nedergaard M: Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013, 33: 18190-18199. 10.1523/JNEUROSCI.1592-13.2013.PubMedCentralPubMed Iliff JJ, Wang MH, Zeppenfeld DM, Venkataraman A, Plog BA, Liao YH, Deane R, Nedergaard M: Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013, 33: 18190-18199. 10.1523/JNEUROSCI.1592-13.2013.PubMedCentralPubMed
203.
go back to reference Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013, 123: 1299-1309. 10.1172/JCI67677.PubMedCentralPubMed Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013, 123: 1299-1309. 10.1172/JCI67677.PubMedCentralPubMed
204.
go back to reference Yang LJ, Kress BT, Weber HJ, Thiyagarajan M, Wang BZ, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013, 11: 107-10.1186/1479-5876-11-107.PubMedCentralPubMed Yang LJ, Kress BT, Weber HJ, Thiyagarajan M, Wang BZ, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013, 11: 107-10.1186/1479-5876-11-107.PubMedCentralPubMed
205.
go back to reference Papisov MI, Belov VV, Gannon KS: Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm. 2013, 10: 1522-1532. 10.1021/mp300474m.PubMedCentralPubMed Papisov MI, Belov VV, Gannon KS: Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm. 2013, 10: 1522-1532. 10.1021/mp300474m.PubMedCentralPubMed
206.
go back to reference Thrane VR, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M: Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013, 3: 2582-PubMedCentralPubMed Thrane VR, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M: Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013, 3: 2582-PubMedCentralPubMed
207.
go back to reference Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373-377. 10.1126/science.1241224.PubMed Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373-377. 10.1126/science.1241224.PubMed
208.
go back to reference Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013, 14: 265-277. 10.1038/nrn3468.PubMedCentralPubMed Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013, 14: 265-277. 10.1038/nrn3468.PubMedCentralPubMed
210.
go back to reference Ranck JB: Electrical impedance in the subicular area of rats during paradoxical sleep. Exp Neurol. 1966, 16: 416-437. 10.1016/0014-4886(66)90107-5.PubMed Ranck JB: Electrical impedance in the subicular area of rats during paradoxical sleep. Exp Neurol. 1966, 16: 416-437. 10.1016/0014-4886(66)90107-5.PubMed
211.
go back to reference Ranck JB: Electrical impedance changes in many sites of brain in paradoxical sleep, anesthesia, and activity. Exp Neurol. 1970, 27: 454-475. 10.1016/0014-4886(70)90107-X.PubMed Ranck JB: Electrical impedance changes in many sites of brain in paradoxical sleep, anesthesia, and activity. Exp Neurol. 1970, 27: 454-475. 10.1016/0014-4886(70)90107-X.PubMed
Metadata
Title
Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence
Authors
Stephen B Hladky
Margery A Barrand
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2014
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-11-26

Other articles of this Issue 1/2014

Fluids and Barriers of the CNS 1/2014 Go to the issue