Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Research

Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation

Authors: Jean-François Ghersi-Egea, Anaïd Babikian, Sandrine Blondel, Nathalie Strazielle

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

Background

The cerebrospinal fluid (CSF) circulatory system is involved in neuroimmune regulation, cerebral detoxification, and delivery of various endogenous and exogenous substances. In conjunction with the choroid plexuses, which form the main barrier site between blood and CSF, this fluid participates in controlling the environment of the developing brain. The lack of comprehensive data on developmental changes in CSF volume and distribution impairs our understanding of CSF contribution to brain development, and limits the interpretation of blood-CSF permeability data. To address these issues, we describe the evolution of the CSF circulatory system during the perinatal period and have quantified the volume of the different ventricular, cisternal and subarachnoid CSF compartments at three ages in developing rats.

Methods

Immunohistofluorescence was used to visualize tight junctions in parenchymal and meningeal vessels, and in choroid plexus epithelium of 19-day fetal rats. A quantitative method based on serial sectioning of frozen head and surface measurements at the cutting plane was used to determine the volume of twenty different CSF compartments in rat brain on embryonic day 19 (E19), and postnatal days 2 (P2) and 9 (P9). Blood-CSF permeability constants for sucrose were established at P2 and P9, following CSF sampling from the cisterna magna.

Results

Claudin-1 and claudin-5 immunohistofluorescence labeling illustrated the barrier phenotype acquired by all blood–brain and blood-CSF interfaces throughout the entire CNS in E19 rats. This should ensure that brain fluid composition is regulated and independent from plasma composition in developing brain. Analysis of the caudo-rostral profiles of CSF distribution and of the volume of twenty CSF compartments indicated that the CSF-to-cranial cavity volume ratio decreases from 30% at E19 to 10% at P9. CSF compartmentalization within the brain changes during this period, with a major decrease in CSF-to-brain volume ratio in the caudal half of the brain. Integrating CSF volume with the measurement of permeability constants, adds to our understanding of the apparent postnatal decrease in blood-CSF permeability to sucrose.

Conclusion

Reference data on CSF compartment volumes throughout development are provided. Such data can be used to refine blood-CSF permeability constants in developing rats, and should help a better understanding of diffusion, bulk flow, and volume transmission in the developing brain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003;100:8389–94.CrossRefPubMedCentralPubMed Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003;100:8389–94.CrossRefPubMedCentralPubMed
2.
3.
go back to reference Schmitt C, Strazielle N, Ghersi-Egea JF. Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. J Neuroinflammation. 2012;9:187.CrossRefPubMedCentralPubMed Schmitt C, Strazielle N, Ghersi-Egea JF. Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. J Neuroinflammation. 2012;9:187.CrossRefPubMedCentralPubMed
4.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.CrossRefPubMedCentralPubMed Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.CrossRefPubMedCentralPubMed
5.
go back to reference Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol. 2005;71:1–52.CrossRefPubMed Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol. 2005;71:1–52.CrossRefPubMed
6.
go back to reference Chodobski A, Silverberg G, Szmydynger-Chodobska J. The role of the choroid plexus in transport and production of polypeptides. In: Zeng W, Chodobski A, editors. The blood-cerebrospinal fluid barrier. Boca Raton, Fl, USA: CRC Press; 2005. p. 237-74. Chodobski A, Silverberg G, Szmydynger-Chodobska J. The role of the choroid plexus in transport and production of polypeptides. In: Zeng W, Chodobski A, editors. The blood-cerebrospinal fluid barrier. Boca Raton, Fl, USA: CRC Press; 2005. p. 237-74.
7.
go back to reference Schmitt C, Strazielle N, Richaud P, Bouron A, Ghersi-Egea JF. Active transport at the blood-CSF barrier contributes to manganese influx into the brain. J Neurochem. 2011;117:747–56.PubMed Schmitt C, Strazielle N, Richaud P, Bouron A, Ghersi-Egea JF. Active transport at the blood-CSF barrier contributes to manganese influx into the brain. J Neurochem. 2011;117:747–56.PubMed
8.
go back to reference Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996;75:1271–88.CrossRefPubMed Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996;75:1271–88.CrossRefPubMed
9.
go back to reference Badaut J, Ghersi-Egea JF. The choroid plexus and cerebrospinal fluid system: roles in neurodegenerative diseases. In: Neman J, Chen TC, editors. The choroid plexus and cerebrospinal fluid: emerging roles in CNS development, maintenance, and disease progression. San Diego: Elsevier/Academic Press; 2014. in press. Badaut J, Ghersi-Egea JF. The choroid plexus and cerebrospinal fluid system: roles in neurodegenerative diseases. In: Neman J, Chen TC, editors. The choroid plexus and cerebrospinal fluid: emerging roles in CNS development, maintenance, and disease progression. San Diego: Elsevier/Academic Press; 2014. in press.
10.
go back to reference Kratzer I, Liddelow SA, Saunders NR, Dziegielewska KM, Strazielle N, Ghersi-Egea JF. Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids Barriers CNS. 2013;10:25.CrossRefPubMedCentralPubMed Kratzer I, Liddelow SA, Saunders NR, Dziegielewska KM, Strazielle N, Ghersi-Egea JF. Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids Barriers CNS. 2013;10:25.CrossRefPubMedCentralPubMed
11.
go back to reference Liddelow SA, Dziegielewska KM, Ek CJ, Habgood MD, Bauer H, Bauer HC, et al. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8:e65629.CrossRefPubMedCentralPubMed Liddelow SA, Dziegielewska KM, Ek CJ, Habgood MD, Bauer H, Bauer HC, et al. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8:e65629.CrossRefPubMedCentralPubMed
12.
go back to reference Strazielle N, Ghersi-Egea JF. Physiology of blood–brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10:1473–91.CrossRefPubMed Strazielle N, Ghersi-Egea JF. Physiology of blood–brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10:1473–91.CrossRefPubMed
13.
go back to reference Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol. 2012;138:861–79.CrossRefPubMedCentralPubMed Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol. 2012;138:861–79.CrossRefPubMedCentralPubMed
14.
go back to reference Jones HC, Andersohn RW. Progressive changes in cortical water and electrolyte content at three stages of rat infantile hydrocephalus and the effect of shunt treatment. Exp Neurol. 1998;154:126–36.CrossRefPubMed Jones HC, Andersohn RW. Progressive changes in cortical water and electrolyte content at three stages of rat infantile hydrocephalus and the effect of shunt treatment. Exp Neurol. 1998;154:126–36.CrossRefPubMed
15.
go back to reference Normand G, Clos J, Vincendon G, Gombos G. Postnatal development of rat cerebellum: glycosaminoglycan changes related to variation in water content, cell formation and organ growth. Int J Dev Neurosci. 1985;3:245–56.CrossRefPubMed Normand G, Clos J, Vincendon G, Gombos G. Postnatal development of rat cerebellum: glycosaminoglycan changes related to variation in water content, cell formation and organ growth. Int J Dev Neurosci. 1985;3:245–56.CrossRefPubMed
16.
go back to reference Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83:346–56.CrossRefPubMed Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83:346–56.CrossRefPubMed
17.
go back to reference Ek CJ, Habgood MD, Dziegielewska KM, Potter A, Saunders NR. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol. 2001;536:841–53.CrossRefPubMedCentralPubMed Ek CJ, Habgood MD, Dziegielewska KM, Potter A, Saunders NR. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol. 2001;536:841–53.CrossRefPubMedCentralPubMed
18.
go back to reference Harris NG, Jones HC, Williams SC. MR imaging for measurements of ventricles and cerebral cortex in postnatal rats (H-Tx strain) with progressive inherited hydrocephalus. Exp Neurol. 1992;118:1–6.CrossRefPubMed Harris NG, Jones HC, Williams SC. MR imaging for measurements of ventricles and cerebral cortex in postnatal rats (H-Tx strain) with progressive inherited hydrocephalus. Exp Neurol. 1992;118:1–6.CrossRefPubMed
19.
go back to reference Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD. Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem. 1996;67:880–3.CrossRefPubMed Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD. Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem. 1996;67:880–3.CrossRefPubMed
20.
go back to reference Wright R, Kyriakopoulou V, Ledig C, Rutherford MA, Hajnal JV, Rueckert D, et al. Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage. 2014;91:21–32.CrossRefPubMed Wright R, Kyriakopoulou V, Ledig C, Rutherford MA, Hajnal JV, Rueckert D, et al. Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage. 2014;91:21–32.CrossRefPubMed
21.
go back to reference Ennis SR, Keep RF. The effects of cerebral ischemia on the rat choroid plexus. J Cereb Blood Flow Metab. 2006;26:675–83.CrossRefPubMed Ennis SR, Keep RF. The effects of cerebral ischemia on the rat choroid plexus. J Cereb Blood Flow Metab. 2006;26:675–83.CrossRefPubMed
22.
go back to reference Nehlig A, Pereira de Vasconcelos A, Boyet S. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab. 1989;9:579–88.CrossRefPubMed Nehlig A, Pereira de Vasconcelos A, Boyet S. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab. 1989;9:579–88.CrossRefPubMed
23.
go back to reference Pereira de Vasconcelos A, Ferrandon A, Nehlig A. Local cerebral blood flow during lithium-pilocarpine seizures in the developing and adult rat: role of coupling between blood flow and metabolism in the genesis of neuronal damage. J Cereb Blood Flow Metab. 2002;22:196–205.CrossRefPubMed Pereira de Vasconcelos A, Ferrandon A, Nehlig A. Local cerebral blood flow during lithium-pilocarpine seizures in the developing and adult rat: role of coupling between blood flow and metabolism in the genesis of neuronal damage. J Cereb Blood Flow Metab. 2002;22:196–205.CrossRefPubMed
24.
go back to reference Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR. The blood-CSF barrier explained: when development is not immaturity. Bioessays. 2008;30:237–48.CrossRefPubMed Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR. The blood-CSF barrier explained: when development is not immaturity. Bioessays. 2008;30:237–48.CrossRefPubMed
25.
go back to reference Habgood MD, Knott GW, Dziegielewska KM, Saunders NR. The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J Physiol. 1993;468:73–83.CrossRefPubMedCentralPubMed Habgood MD, Knott GW, Dziegielewska KM, Saunders NR. The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J Physiol. 1993;468:73–83.CrossRefPubMedCentralPubMed
26.
go back to reference Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Liddelow SA, Potter AM, et al. Blood-CSF barrier function in the rat embryo. Eur J Neurosci. 2006;24:65–76.CrossRefPubMed Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Liddelow SA, Potter AM, et al. Blood-CSF barrier function in the rat embryo. Eur J Neurosci. 2006;24:65–76.CrossRefPubMed
Metadata
Title
Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation
Authors
Jean-François Ghersi-Egea
Anaïd Babikian
Sandrine Blondel
Nathalie Strazielle
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-015-0001-2

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue