Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Research article

Regulatory T cells limit age-associated retinal inflammation and neurodegeneration

Authors: María Llorián-Salvador, Alerie G. de Fuente, Christopher E. McMurran, Amy Dashwood, James Dooley, Adrian Liston, Rosana Penalva, Yvonne Dombrowski, Alan W. Stitt, Denise C. Fitzgerald

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Background

Ageing is the principal risk factor for retinal degenerative diseases, which are the commonest cause of blindness in the developed countries. These conditions include age-related macular degeneration or diabetic retinopathy. Regulatory T cells play a vital role in immunoregulation of the nervous system by limiting inflammation and tissue damage in health and disease. Because the retina was long-considered an immunoprivileged site, the precise contribution of regulatory T cells in retinal homeostasis and in age-related retinal diseases remains unknown.

Methods

Regulatory T cells were selectively depleted in both young (2–4 months) and aged (18–23 months) FoxP3-DTR mice. We evaluated neuroretinal degeneration, gliosis, subretinal space phagocyte infiltration, and retinal pigmented epithelium morphology through immunofluorescence analysis. Subsequently, aged Treg depleted animals underwent adoptive transfer of both young and aged regulatory T cells from wild-type mice, and the resulting impact on neurodegeneration was assessed. Statistical analyses employed included the U-Mann Whitney test, and for comparisons involving more than two groups, 1-way ANOVA analysis followed by Bonferroni’s post hoc test.

Results

Our study shows that regulatory T cell elimination leads to retinal pigment epithelium cell dysmorphology and accumulation of phagocytes in the subretinal space of young and aged mice. However, only aged mice experience retinal neurodegeneration and gliosis. Surprisingly, adoptive transfer of young but not aged regulatory T cells reverse these changes.

Conclusion

Our findings demonstrate an essential role for regulatory T cells in maintaining age retinal homeostasis and preventing age-related neurodegeneration. This previously undescribed role of regulatory T cells in limiting retinal inflammation, RPE/choroid epithelium damage and subsequently photoreceptor loss with age, opens novel avenues to explore regulatory T cell neuroprotective and anti-inflammatory properties as potential therapeutic approaches for age-related retinal diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28:348–68.PubMedCrossRef Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28:348–68.PubMedCrossRef
3.
go back to reference Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res. 2019;69:159–72.PubMedCrossRef Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res. 2019;69:159–72.PubMedCrossRef
4.
go back to reference Chen M, Forrester JV, Xu H. Dysregulation in Retinal Para-Inflammation and Age-Related Retinal Degeneration in CCL2 or CCR2 Deficient Mice. PLoS ONE. 2011;6:e22818.PubMedPubMedCentralCrossRef Chen M, Forrester JV, Xu H. Dysregulation in Retinal Para-Inflammation and Age-Related Retinal Degeneration in CCL2 or CCR2 Deficient Mice. PLoS ONE. 2011;6:e22818.PubMedPubMedCentralCrossRef
6.
go back to reference Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity. 2021;54:1527-1542.e8.PubMedPubMedCentralCrossRef Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity. 2021;54:1527-1542.e8.PubMedPubMedCentralCrossRef
7.
go back to reference Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–50.PubMedCrossRef Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–50.PubMedCrossRef
8.
go back to reference Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20:674–80.PubMedPubMedCentralCrossRef Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20:674–80.PubMedPubMedCentralCrossRef
9.
go back to reference Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. 2020;15:32. Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. 2020;15:32.
10.
go back to reference Evans FL, Dittmer M, de la Fuente AG, Fitzgerald DC. Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Frontiers in immunology [Internet]. 2019;10:815–8. Evans FL, Dittmer M, de la Fuente AG, Fitzgerald DC. Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Frontiers in immunology [Internet]. 2019;10:815–8.
11.
go back to reference Yshii L, Pasciuto E, Bielefeld P, Mascali L, Lemaitre P, Marino M, et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol. 2022;23:878–91.PubMedPubMedCentralCrossRef Yshii L, Pasciuto E, Bielefeld P, Mascali L, Lemaitre P, Marino M, et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol. 2022;23:878–91.PubMedPubMedCentralCrossRef
12.
go back to reference Lemaitre P, Tareen SH, Pasciuto E, Mascali L, Martirosyan A, Callaerts‐Vegh Z, et al. Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. Embo Mol Med. 2023;15:e16805. Lemaitre P, Tareen SH, Pasciuto E, Mascali L, Martirosyan A, Callaerts‐Vegh Z, et al. Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. Embo Mol Med. 2023;15:e16805.
14.
go back to reference McPherson SW, Heuss ND, Gregerson DS. Regulation of CD8+ T Cell Responses to Retinal Antigen by Local FoxP3+ Regulatory T Cells. Front Immunol. 2012;3:166.PubMedPubMedCentralCrossRef McPherson SW, Heuss ND, Gregerson DS. Regulation of CD8+ T Cell Responses to Retinal Antigen by Local FoxP3+ Regulatory T Cells. Front Immunol. 2012;3:166.PubMedPubMedCentralCrossRef
15.
go back to reference Deliyanti D, Talia DM, Zhu T, Maxwell MJ, Agrotis A, Jerome JR, et al. Foxp3+ Tregs are recruited to the retina to repair pathological angiogenesis. Nat Commun. 2017;8:748.PubMedPubMedCentralCrossRef Deliyanti D, Talia DM, Zhu T, Maxwell MJ, Agrotis A, Jerome JR, et al. Foxp3+ Tregs are recruited to the retina to repair pathological angiogenesis. Nat Commun. 2017;8:748.PubMedPubMedCentralCrossRef
16.
go back to reference Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, et al. Aging is associated with increased regulatory T-cell function. Aging Cell. 2014;13:441–8.PubMedPubMedCentralCrossRef Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, et al. Aging is associated with increased regulatory T-cell function. Aging Cell. 2014;13:441–8.PubMedPubMedCentralCrossRef
17.
go back to reference Elyahu Y, Hekselman I, Eizenberg-Magar I, Berner O, Strominger I, Schiller M, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5:eaaw8330.PubMedPubMedCentralCrossRef Elyahu Y, Hekselman I, Eizenberg-Magar I, Berner O, Strominger I, Schiller M, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5:eaaw8330.PubMedPubMedCentralCrossRef
18.
go back to reference Du X, Penalva R, Little K, Kissenpfennig A, Chen M, Xu H. Deletion of Socs3 in LysM+ cells and Cx3cr1 resulted in age-dependent development of retinal microgliopathy. Mol Neurodegener. 2021;16:9. Du X, Penalva R, Little K, Kissenpfennig A, Chen M, Xu H. Deletion of Socs3 in LysM+ cells and Cx3cr1 resulted in age-dependent development of retinal microgliopathy. Mol Neurodegener. 2021;16:9. 
19.
go back to reference McPherson SW, Heuss ND. Abedin Md, Roehrich H, Pierson MJ, Gregerson DS. Parabiosis reveals the correlation between the recruitment of circulating antigen presenting cells to the retina and the induction of spontaneous autoimmune uveoretinitis. J Neuroinflamm. 2022;19:295. McPherson SW, Heuss ND. Abedin Md, Roehrich H, Pierson MJ, Gregerson DS. Parabiosis reveals the correlation between the recruitment of circulating antigen presenting cells to the retina and the induction of spontaneous autoimmune uveoretinitis. J Neuroinflamm. 2022;19:295.
20.
go back to reference Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8:191–7.PubMedCrossRef Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8:191–7.PubMedCrossRef
21.
go back to reference Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, la Villa PD, Lax P, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014;43:17–75.PubMedCrossRef Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, la Villa PD, Lax P, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014;43:17–75.PubMedCrossRef
22.
go back to reference Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Frontiers Cell Neurosci. 2015;9:484.CrossRef Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Frontiers Cell Neurosci. 2015;9:484.CrossRef
23.
go back to reference Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, et al. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron. 2018;97:299-312.e6.PubMedPubMedCentralCrossRef Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, et al. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron. 2018;97:299-312.e6.PubMedPubMedCentralCrossRef
24.
go back to reference Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging. 2006;27:717–22.PubMedCrossRef Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging. 2006;27:717–22.PubMedCrossRef
26.
go back to reference Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, et al. Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28:423–51.PubMedCrossRef Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, et al. Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28:423–51.PubMedCrossRef
27.
go back to reference Hippert C, Graca AB, Barber AC, West EL, Smith AJ, Ali RR, et al. Müller Glia Activation in Response to Inherited Retinal Degeneration Is Highly Varied and Disease-Specific. PLoS ONE. 2015;10:e0120415.PubMedPubMedCentralCrossRef Hippert C, Graca AB, Barber AC, West EL, Smith AJ, Ali RR, et al. Müller Glia Activation in Response to Inherited Retinal Degeneration Is Highly Varied and Disease-Specific. PLoS ONE. 2015;10:e0120415.PubMedPubMedCentralCrossRef
29.
go back to reference Tarau I-S, Berlin A, Curcio CA, Ach T. The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci. 2019;20:3578.PubMedPubMedCentralCrossRef Tarau I-S, Berlin A, Curcio CA, Ach T. The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci. 2019;20:3578.PubMedPubMedCentralCrossRef
30.
go back to reference Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology. 2014;60:130–7.PubMedCrossRef Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology. 2014;60:130–7.PubMedCrossRef
31.
go back to reference Guo Z, Wang G, Wu B, Chou W-C, Cheng L, Zhou C, et al. DCAF1 regulates Treg senescence via the ROS axis during immunological ageing. J Clin Invest. 2020;130:5893–908.PubMedPubMedCentralCrossRef Guo Z, Wang G, Wu B, Chou W-C, Cheng L, Zhou C, et al. DCAF1 regulates Treg senescence via the ROS axis during immunological ageing. J Clin Invest. 2020;130:5893–908.PubMedPubMedCentralCrossRef
32.
go back to reference Morales-Nebreda L, Helmin KA, Acosta MAT, Markov NS, Hu JY-S, Joudi AM, et al. Aging imparts cell-autonomous dysfunction to regulatory T cells during recovery from influenza pneumonia. JCI Insight. 2021;6:1416990.CrossRef Morales-Nebreda L, Helmin KA, Acosta MAT, Markov NS, Hu JY-S, Joudi AM, et al. Aging imparts cell-autonomous dysfunction to regulatory T cells during recovery from influenza pneumonia. JCI Insight. 2021;6:1416990.CrossRef
33.
go back to reference Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced Macrophage Activation and Signal Transduction in the Absence of Src-Family Kinases Hck, Fgr, and Lyn. J Exp Medicine. 1997;185:1661–70.CrossRef Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced Macrophage Activation and Signal Transduction in the Absence of Src-Family Kinases Hck, Fgr, and Lyn. J Exp Medicine. 1997;185:1661–70.CrossRef
34.
go back to reference Ghosh F, Abdshill H, Arnér K, Voss U, Taylor L. Retinal neuroinflammatory induced neuronal degeneration - Role of toll-like receptor-4 and relationship with gliosis. Exp Eye Res. 2018;169:99–110.PubMedCrossRef Ghosh F, Abdshill H, Arnér K, Voss U, Taylor L. Retinal neuroinflammatory induced neuronal degeneration - Role of toll-like receptor-4 and relationship with gliosis. Exp Eye Res. 2018;169:99–110.PubMedCrossRef
35.
go back to reference Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625–40.PubMedPubMedCentralCrossRef Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625–40.PubMedPubMedCentralCrossRef
36.
go back to reference Lee AY, Foulsham W. Regulatory T Cells: Therapeutic Opportunities in Uveitis. Frontiers Ophthalmol. 2022;2:901144.CrossRef Lee AY, Foulsham W. Regulatory T Cells: Therapeutic Opportunities in Uveitis. Frontiers Ophthalmol. 2022;2:901144.CrossRef
37.
go back to reference Ferdous S, Liao KL, Gefke ID, Summers VR, Wu W, Donaldson KJ, et al. Age-Related Retinal Changes in Wild-Type C57BL/6J Mice Between 2 and 32 Months. Investig Ophthalmol Vis Sci. 2021;62:9.CrossRef Ferdous S, Liao KL, Gefke ID, Summers VR, Wu W, Donaldson KJ, et al. Age-Related Retinal Changes in Wild-Type C57BL/6J Mice Between 2 and 32 Months. Investig Ophthalmol Vis Sci. 2021;62:9.CrossRef
39.
go back to reference Xu H, Chen M, Manivannan A, Lois N, Forrester JV. Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell. 2008;7:58–68.PubMedCrossRef Xu H, Chen M, Manivannan A, Lois N, Forrester JV. Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell. 2008;7:58–68.PubMedCrossRef
40.
go back to reference Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. Immunity. 2016;44:355–67.PubMedPubMedCentralCrossRef Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. Immunity. 2016;44:355–67.PubMedPubMedCentralCrossRef
41.
go back to reference McPherson SW, Heuss ND, Pierson MJ, Gregerson DS. Retinal antigen-specific regulatory T cells protect against spontaneous and induced autoimmunity and require local dendritic cells. J Neuroinflammation. 2014;11:205.PubMedPubMedCentralCrossRef McPherson SW, Heuss ND, Pierson MJ, Gregerson DS. Retinal antigen-specific regulatory T cells protect against spontaneous and induced autoimmunity and require local dendritic cells. J Neuroinflammation. 2014;11:205.PubMedPubMedCentralCrossRef
42.
go back to reference Thornton AM, Shevach EM. CD4+CD25+ Immunoregulatory T Cells Suppress Polyclonal T Cell Activation In Vitro by Inhibiting Interleukin 2 Production. J Exp Med. 1998;188:287–96.PubMedPubMedCentralCrossRef Thornton AM, Shevach EM. CD4+CD25+ Immunoregulatory T Cells Suppress Polyclonal T Cell Activation In Vitro by Inhibiting Interleukin 2 Production. J Exp Med. 1998;188:287–96.PubMedPubMedCentralCrossRef
43.
go back to reference Haimon Z, Frumer GR, Kim J-S, Trzebanski S, Haffner-Krausz R, Ben-Dor S, et al. Cognate microglia–T cell interactions shape the functional regulatory T cell pool in experimental autoimmune encephalomyelitis pathology. Nat Immunol. 2022;23:1749–62.PubMedCrossRef Haimon Z, Frumer GR, Kim J-S, Trzebanski S, Haffner-Krausz R, Ben-Dor S, et al. Cognate microglia–T cell interactions shape the functional regulatory T cell pool in experimental autoimmune encephalomyelitis pathology. Nat Immunol. 2022;23:1749–62.PubMedCrossRef
44.
go back to reference Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–9.PubMedPubMedCentralCrossRef Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–9.PubMedPubMedCentralCrossRef
45.
go back to reference Gravel M, Béland L-C, Soucy G, Abdelhamid E, Rahimian R, Gravel C, et al. IL-10 Controls Early Microglial Phenotypes and Disease Onset in ALS Caused by Misfolded Superoxide Dismutase 1. J Neurosci. 2016;36:1031–48.PubMedPubMedCentralCrossRef Gravel M, Béland L-C, Soucy G, Abdelhamid E, Rahimian R, Gravel C, et al. IL-10 Controls Early Microglial Phenotypes and Disease Onset in ALS Caused by Misfolded Superoxide Dismutase 1. J Neurosci. 2016;36:1031–48.PubMedPubMedCentralCrossRef
Metadata
Title
Regulatory T cells limit age-associated retinal inflammation and neurodegeneration
Authors
María Llorián-Salvador
Alerie G. de Fuente
Christopher E. McMurran
Amy Dashwood
James Dooley
Adrian Liston
Rosana Penalva
Yvonne Dombrowski
Alan W. Stitt
Denise C. Fitzgerald
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-024-00724-w

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue