Skip to main content
Top
Published in: Diabetologia 3/2014

01-03-2014 | Article

Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial

Authors: Esther Phielix, Tomas Jelenik, Peter Nowotny, Julia Szendroedi, Michael Roden

Published in: Diabetologia | Issue 3/2014

Login to get access

Abstract

Aims/hypothesis

Muscle mitochondrial function can vary during fasting, but is lower during hyperinsulinaemia in insulin-resistant humans. Ageing and hyperlipidaemia may be the culprits, but the mechanisms remain unclear. We hypothesised that (1) insulin would fail to increase mitochondrial oxidative capacity in non-diabetic insulin-resistant young obese humans and in elderly patients with type 2 diabetes and (2) reducing NEFA levels would improve insulin sensitivity by raising oxidative capacity and lowering oxidative stress.

Methods

Before and after insulin (4, 40, 100 nmol/l) stimulation, mitochondrial oxidative capacity was measured in permeabilised fibres and isolated mitochondria using high-resolution respirometry, and H2O2 production was assessed fluorimetrically. Tissue-specific insulin sensitivity was measured with hyperinsulinaemic–euglycaemic clamps combined with stable isotopes. To test the second hypothesis, in a 1-day randomised, crossover study, 15 patients with type 2 diabetes recruited via local advertisement were assessed for eligibility. Nine patients fulfilled the inclusion criteria (BMI <35 kg/m2; age <65 years) and were allocated to and completed the intervention, including oral administration of 750 mg placebo or acipimox. Blinded randomisation was performed by the pharmacy; all participants, researchers performing the measurements and those assessing study outcomes were blinded. The main outcome measures were insulin sensitivity, oxidative capacity and oxidative stress.

Results

Insulin sensitivity and mitochondrial oxidative capacity were ∼31% and ∼21% lower in the obese groups than in the lean group. The obese participants also exhibited blunted substrate oxidation upon insulin stimulation. In the patients with type 2 diabetes, acipimox improved insulin sensitivity by ∼27% and reduced H2O2 production by ∼45%, but did not improve basal or insulin-stimulated mitochondrial oxidative capacity. No harmful treatment side effects occurred.

Conclusions/interpretation

Decreased mitochondrial oxidative capacity can also occur independently of age in insulin-resistant young obese humans. Insulin resistance is present at the muscle mitochondrial level, and is not affected by reducing circulating NEFAs in type 2 diabetes. Thus, impaired plasticity of mitochondrial function is an intrinsic phenomenon that probably occurs independently of lipotoxicity and reduced glucose uptake.
Trial registration Clinical Trials NCT00943059
Funding This study was funded in part by a grant from the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.).
Appendix
Available only for authorised users
Literature
1.
go back to reference Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedCentralPubMedCrossRef
2.
go back to reference Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2010) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721PubMedCentralPubMedCrossRef Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2010) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721PubMedCentralPubMedCrossRef
3.
go back to reference Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949PubMedCrossRef Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949PubMedCrossRef
4.
go back to reference Schrauwen-Hinderling VB, Kooi ME, Hesselink MK et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50:113–120PubMedCrossRef Schrauwen-Hinderling VB, Kooi ME, Hesselink MK et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50:113–120PubMedCrossRef
5.
go back to reference Trenell MI, Hollingsworth KG, Lim EL, Taylor R (2008) Increased daily walking improves lipid oxidation without changes in mitochondrial function in type 2 diabetes. Diabetes Care 31:1644–1649PubMedCrossRef Trenell MI, Hollingsworth KG, Lim EL, Taylor R (2008) Increased daily walking improves lipid oxidation without changes in mitochondrial function in type 2 diabetes. Diabetes Care 31:1644–1649PubMedCrossRef
6.
go back to reference De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158:643–653PubMedCrossRef De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158:643–653PubMedCrossRef
7.
go back to reference Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:e154PubMedCentralPubMedCrossRef Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:e154PubMedCentralPubMedCrossRef
8.
go back to reference Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2:e233PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2:e233PubMedCentralPubMedCrossRef
9.
go back to reference Kacerovsky M, Brehm A, Chmelik M et al (2011) Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med 269:189–199PubMedCrossRef Kacerovsky M, Brehm A, Chmelik M et al (2011) Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med 269:189–199PubMedCrossRef
10.
go back to reference Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhausl W, Roden M (2006) Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 55:136–140PubMedCrossRef Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhausl W, Roden M (2006) Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 55:136–140PubMedCrossRef
11.
go back to reference Asmann YW, Stump CS, Short KR et al (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55:3309–3319PubMedCrossRef Asmann YW, Stump CS, Short KR et al (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55:3309–3319PubMedCrossRef
12.
go back to reference Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A 100:7996–8001PubMedCentralPubMedCrossRef Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A 100:7996–8001PubMedCentralPubMedCrossRef
13.
go back to reference Hojlund K, Yi Z, Lefort N et al (2010) Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. Diabetologia 53:541–551PubMedCrossRef Hojlund K, Yi Z, Lefort N et al (2010) Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. Diabetologia 53:541–551PubMedCrossRef
14.
go back to reference Mogensen M, Sahlin K, Fernstrom M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599PubMedCrossRef Mogensen M, Sahlin K, Fernstrom M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599PubMedCrossRef
15.
go back to reference Phielix E, Szendroedi J, Roden M (2011) Mitochondrial function and insulin resistance during aging: a mini-review. Gerontology 57:387–396PubMed Phielix E, Szendroedi J, Roden M (2011) Mitochondrial function and insulin resistance during aging: a mini-review. Gerontology 57:387–396PubMed
16.
go back to reference Kotronen A, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H (2008) Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome. Diabetologia 51:130–138PubMedCrossRef Kotronen A, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H (2008) Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome. Diabetologia 51:130–138PubMedCrossRef
17.
go back to reference Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430PubMedCrossRef Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430PubMedCrossRef
18.
go back to reference Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55:628–634PubMed Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55:628–634PubMed
19.
go back to reference Schadewaldt P, Nowotny B, Strassburger K, Kotzka J, Roden M (2013) Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability. Am J Clin Nutr 97:763–773PubMedCrossRef Schadewaldt P, Nowotny B, Strassburger K, Kotzka J, Roden M (2013) Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability. Am J Clin Nutr 97:763–773PubMedCrossRef
20.
go back to reference Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150PubMedCrossRef Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150PubMedCrossRef
21.
go back to reference Phielix E, Meex R, Ouwens DM et al (2012) High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes 61:2472–2478PubMedCrossRef Phielix E, Meex R, Ouwens DM et al (2012) High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes 61:2472–2478PubMedCrossRef
22.
go back to reference Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353PubMedCrossRef Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353PubMedCrossRef
23.
go back to reference Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581PubMedCentralPubMedCrossRef Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581PubMedCentralPubMedCrossRef
24.
go back to reference Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796PubMedCentralPubMedCrossRef Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796PubMedCentralPubMedCrossRef
26.
go back to reference Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011PubMedCrossRef Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011PubMedCrossRef
27.
go back to reference Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417PubMedCrossRef Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417PubMedCrossRef
28.
go back to reference Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhausl W, Roden M (2010) Acute elevation of plasma lipids does not affect ATP synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab 299:E33–E38PubMedCrossRef Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhausl W, Roden M (2010) Acute elevation of plasma lipids does not affect ATP synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab 299:E33–E38PubMedCrossRef
29.
go back to reference Lim EL, Hollingsworth KG, Smith FE, Thelwall PE, Taylor R (2011) Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates. Clin Sci (Lond) 121:169–177CrossRef Lim EL, Hollingsworth KG, Smith FE, Thelwall PE, Taylor R (2011) Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates. Clin Sci (Lond) 121:169–177CrossRef
30.
go back to reference Johannsen DL, Ravussin E (2010) Can increased muscle ROS scavenging keep older animals young and metabolically fit? Cell Metab 12:557–558PubMedCrossRef Johannsen DL, Ravussin E (2010) Can increased muscle ROS scavenging keep older animals young and metabolically fit? Cell Metab 12:557–558PubMedCrossRef
31.
go back to reference Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94:252–258PubMedCrossRef Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94:252–258PubMedCrossRef
32.
go back to reference van de Weijer T, Sparks LM, Phielix E et al (2013) Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS One 8:e51648PubMedCentralPubMedCrossRef van de Weijer T, Sparks LM, Phielix E et al (2013) Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS One 8:e51648PubMedCentralPubMedCrossRef
Metadata
Title
Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial
Authors
Esther Phielix
Tomas Jelenik
Peter Nowotny
Julia Szendroedi
Michael Roden
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-3127-2

Other articles of this Issue 3/2014

Diabetologia 3/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.