Skip to main content
Top
Published in: Diabetologia 3/2010

01-03-2010 | Article

Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle

Authors: K. Højlund, Z. Yi, N. Lefort, P. Langlais, B. Bowen, K. Levin, H. Beck-Nielsen, L. J. Mandarino

Published in: Diabetologia | Issue 3/2010

Login to get access

Abstract

Aims/hypothesis

Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-β) and determine protein abundance of ATPsyn-β and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals.

Methods

Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-β using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic–hyperinsulinaemic clamps.

Results

Seven phosphorylation sites were identified on ATPsyn-β purified from human skeletal muscle. Obese individuals with and without type 2 diabetes were characterised by impaired insulin-stimulated glucose disposal rates, and showed a ∼30% higher phosphorylation of ATPsyn-β at Tyr361 and Thr213 (within the nucleotide-binding region of ATP synthase) as well as a coordinated downregulation of ATPsyn-β protein and other OxPhos components. Insulin increased Tyr361 phosphorylation of ATPsyn-β by ∼50% in lean and healthy, but not insulin-resistant, individuals.

Conclusions/interpretation

These data demonstrate that ATPsyn-β is phosphorylated at multiple sites in human skeletal muscle, and suggest that abnormal site-specific phosphorylation of ATPsyn-β together with reduced content of OxPhos proteins contributes to mitochondrial dysfunction in insulin resistance. Further characterisation of phosphorylation of ATPsyn-β may offer novel targets of treatment in human diseases with mitochondrial dysfunction, such as diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407CrossRefPubMed Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407CrossRefPubMed
2.
go back to reference Mottram RF (1955) The oxygen consumption of human skeletal muscle in vivo. J Physiol 128:268–276PubMed Mottram RF (1955) The oxygen consumption of human skeletal muscle in vivo. J Physiol 128:268–276PubMed
3.
go back to reference Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228PubMedCrossRef Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228PubMedCrossRef
4.
go back to reference Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320CrossRefPubMed Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320CrossRefPubMed
5.
go back to reference Højlund K, Staehr P, Hansen BF et al (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 52:1393–1402CrossRefPubMed Højlund K, Staehr P, Hansen BF et al (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 52:1393–1402CrossRefPubMed
6.
go back to reference Højlund K, Frystyk J, Levin K, Flyvbjerg A, Wojtaszewski JF, Beck-Nielsen H (2006) Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes. Diabetologia 49:1283–1291CrossRefPubMed Højlund K, Frystyk J, Levin K, Flyvbjerg A, Wojtaszewski JF, Beck-Nielsen H (2006) Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes. Diabetologia 49:1283–1291CrossRefPubMed
7.
go back to reference Højlund K, Beck-Nielsen H (2006) Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle. Markers or mediators of insulin resistance in type 2 diabetes. Curr Diabetes Rev 2:375–395PubMed Højlund K, Beck-Nielsen H (2006) Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle. Markers or mediators of insulin resistance in type 2 diabetes. Curr Diabetes Rev 2:375–395PubMed
8.
go back to reference Levin K, Daa Schroeder H, Alford FP, Beck-Nielsen H (2001) Morphometric documentation of abnormal intramyocellular fat storage and reduced glycogen in obese patients with Type II diabetes. Diabetologia 44:824–833CrossRefPubMed Levin K, Daa Schroeder H, Alford FP, Beck-Nielsen H (2001) Morphometric documentation of abnormal intramyocellular fat storage and reduced glycogen in obese patients with Type II diabetes. Diabetologia 44:824–833CrossRefPubMed
9.
go back to reference Højlund K, Mogensen M, Sahlin K, Beck-Nielsen H (2008) Mitochondrial dysfunction in diabetes and obesity. Endocrinol Metab Clin North Am 37:713–731CrossRefPubMed Højlund K, Mogensen M, Sahlin K, Beck-Nielsen H (2008) Mitochondrial dysfunction in diabetes and obesity. Endocrinol Metab Clin North Am 37:713–731CrossRefPubMed
10.
go back to reference Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950CrossRefPubMed Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950CrossRefPubMed
11.
go back to reference Mogensen M, Sahlin K, Fernström M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599CrossRefPubMed Mogensen M, Sahlin K, Fernström M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599CrossRefPubMed
12.
go back to reference Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949CrossRefPubMed Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949CrossRefPubMed
13.
go back to reference Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14CrossRefPubMed Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14CrossRefPubMed
14.
15.
go back to reference Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed
16.
go back to reference Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471CrossRefPubMed Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471CrossRefPubMed
17.
go back to reference Skov V, Glintborg D, Knudsen S et al (2007) Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes 56:2349–2355CrossRefPubMed Skov V, Glintborg D, Knudsen S et al (2007) Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes 56:2349–2355CrossRefPubMed
19.
go back to reference Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta 1773:1701–1720CrossRefPubMed Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta 1773:1701–1720CrossRefPubMed
20.
go back to reference Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34CrossRefPubMed Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34CrossRefPubMed
21.
go back to reference Højlund K, Wrzesinski K, Larsen PM et al (2003) Proteome analysis reveals phosphorylation of ATP synthase beta-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278:10436–10442CrossRefPubMed Højlund K, Wrzesinski K, Larsen PM et al (2003) Proteome analysis reveals phosphorylation of ATP synthase beta-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278:10436–10442CrossRefPubMed
22.
go back to reference Yi Z, Luo M, Carroll CA, Weintraub ST, Mandarino LJ (2005) Identification of phosphorylation sites in insulin receptor substrate-1 by hypothesis-driven high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:5693–5699CrossRefPubMed Yi Z, Luo M, Carroll CA, Weintraub ST, Mandarino LJ (2005) Identification of phosphorylation sites in insulin receptor substrate-1 by hypothesis-driven high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:5693–5699CrossRefPubMed
23.
go back to reference Yi Z, Luo M, Mandarino LJ, Reyna SM, Carroll CA, Weintraub ST (2006) Quantification of phosphorylation of insulin receptor substrate-1 by HPLC-ESI-MS/MS. J. Am Soc Mass Spectrom 17:562–567CrossRefPubMed Yi Z, Luo M, Mandarino LJ, Reyna SM, Carroll CA, Weintraub ST (2006) Quantification of phosphorylation of insulin receptor substrate-1 by HPLC-ESI-MS/MS. J. Am Soc Mass Spectrom 17:562–567CrossRefPubMed
24.
go back to reference Yi Z, Langlais P, de Filippis EA et al (2007) Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes 56:1508–1516CrossRefPubMed Yi Z, Langlais P, de Filippis EA et al (2007) Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes 56:1508–1516CrossRefPubMed
25.
go back to reference Højlund K, Yi Z, Hwang H, Bowen B et al (2008) Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics 7:257–267PubMed Højlund K, Yi Z, Hwang H, Bowen B et al (2008) Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics 7:257–267PubMed
26.
go back to reference Yi Z, Bowen BP, Hwang H et al (2008) Global relationship between the proteome and transcriptome of human skeletal muscle. J Proteome Res 7:3230–3241CrossRefPubMed Yi Z, Bowen BP, Hwang H et al (2008) Global relationship between the proteome and transcriptome of human skeletal muscle. J Proteome Res 7:3230–3241CrossRefPubMed
27.
go back to reference Arrell DK, Elliott ST, Kane LA et al (2006) Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res 99:706–714CrossRefPubMed Arrell DK, Elliott ST, Kane LA et al (2006) Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res 99:706–714CrossRefPubMed
28.
go back to reference del Riego G, Casano LM, Martín M, Sabater B (2006) Multiple phosphorylation sites in the beta subunit of thylakoid ATP synthase. Photosynth Res 89:11–18CrossRefPubMed del Riego G, Casano LM, Martín M, Sabater B (2006) Multiple phosphorylation sites in the beta subunit of thylakoid ATP synthase. Photosynth Res 89:11–18CrossRefPubMed
29.
go back to reference Hopper RK, Carroll S, Aponte AM, Johnson DT et al (2006) Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–2536CrossRefPubMed Hopper RK, Carroll S, Aponte AM, Johnson DT et al (2006) Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–2536CrossRefPubMed
30.
go back to reference Liu X, Godwin ML, Nowak G (2004) Protein kinase C-alpha inhibits the repair of oxidative phosphorylation after S-(1, 2-dichlorovinyl)-l-cysteine injury in renal cells. Am J Physiol Renal Physiol 287:F64–73CrossRefPubMed Liu X, Godwin ML, Nowak G (2004) Protein kinase C-alpha inhibits the repair of oxidative phosphorylation after S-(1, 2-dichlorovinyl)-l-cysteine injury in renal cells. Am J Physiol Renal Physiol 287:F64–73CrossRefPubMed
31.
go back to reference Mei J, Wood C, L’abbé MR et al (2007) Consumption of soy protein isolate modulates the phosphorylation status of hepatic ATPase/ATP synthase beta protein and increases ATPase activity in rats. J Nutr 137:2029–2035PubMed Mei J, Wood C, L’abbé MR et al (2007) Consumption of soy protein isolate modulates the phosphorylation status of hepatic ATPase/ATP synthase beta protein and increases ATPase activity in rats. J Nutr 137:2029–2035PubMed
32.
go back to reference Reinders J, Wagner K, Zahedi RP et al (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6:1896–1906CrossRefPubMed Reinders J, Wagner K, Zahedi RP et al (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6:1896–1906CrossRefPubMed
33.
go back to reference Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–27255CrossRefPubMed Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–27255CrossRefPubMed
34.
go back to reference Yanagida M, Miura Y, Yagasaki K, Taoka M, Isobe T, Takahashi N (2000) Matrix assisted laser desorption/ionization-time of flight-mass spectrometry analysis of proteins detected by anti-phosphotyrosine antibody on two-dimensional-gels of fibroblast cell lysates after tumor necrosis factor-alpha stimulation. Electrophoresis 21:1890–1898CrossRefPubMed Yanagida M, Miura Y, Yagasaki K, Taoka M, Isobe T, Takahashi N (2000) Matrix assisted laser desorption/ionization-time of flight-mass spectrometry analysis of proteins detected by anti-phosphotyrosine antibody on two-dimensional-gels of fibroblast cell lysates after tumor necrosis factor-alpha stimulation. Electrophoresis 21:1890–1898CrossRefPubMed
35.
go back to reference Aponte AM, Phillips D, Hopper RK et al (2009) Use of (32)P to study dynamics of the mitochondrial phosphoproteome. J Proteome Res 8:2679–2695CrossRefPubMed Aponte AM, Phillips D, Hopper RK et al (2009) Use of (32)P to study dynamics of the mitochondrial phosphoproteome. J Proteome Res 8:2679–2695CrossRefPubMed
36.
go back to reference Bunney TD, van Walraven HS, de Boer AH (2001) 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci USA 98:4249–4254CrossRefPubMed Bunney TD, van Walraven HS, de Boer AH (2001) 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci USA 98:4249–4254CrossRefPubMed
37.
go back to reference Salvi M, Brunati AM, Toninello A (2005) Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 38:1267–1277CrossRefPubMed Salvi M, Brunati AM, Toninello A (2005) Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 38:1267–1277CrossRefPubMed
38.
go back to reference Samavati L, Lee I, Mathes I, Lottspeich F, Hüttemann M (2008) Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144CrossRefPubMed Samavati L, Lee I, Mathes I, Lottspeich F, Hüttemann M (2008) Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144CrossRefPubMed
39.
go back to reference Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2:e233CrossRefPubMed Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2:e233CrossRefPubMed
40.
go back to reference Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:e154CrossRefPubMed Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:e154CrossRefPubMed
41.
go back to reference Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100:7996–8001CrossRefPubMed Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100:7996–8001CrossRefPubMed
42.
go back to reference Miyazaki Y, He H, Mandarino LJ, DeFronzo RA (2003) Rosiglitazone improves downstream insulin receptor signaling in type 2 diabetic patients. Diabetes 52:1943–1950CrossRefPubMed Miyazaki Y, He H, Mandarino LJ, DeFronzo RA (2003) Rosiglitazone improves downstream insulin receptor signaling in type 2 diabetic patients. Diabetes 52:1943–1950CrossRefPubMed
43.
go back to reference Rabøl R, Højbjerg PM, Almdal T et al (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378CrossRefPubMed Rabøl R, Højbjerg PM, Almdal T et al (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378CrossRefPubMed
44.
go back to reference Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812CrossRefPubMed Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812CrossRefPubMed
45.
go back to reference Koh EH, Park JY, Park HS et al (2007) Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56:2973–2981CrossRefPubMed Koh EH, Park JY, Park HS et al (2007) Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56:2973–2981CrossRefPubMed
46.
go back to reference Yang J, Wong RK, Wang X et al (2004) Leucine culture reveals that ATP synthase functions as a fuel sensor in pancreatic beta-cells. J Biol Chem 279:53915–53923CrossRefPubMed Yang J, Wong RK, Wang X et al (2004) Leucine culture reveals that ATP synthase functions as a fuel sensor in pancreatic beta-cells. J Biol Chem 279:53915–53923CrossRefPubMed
47.
go back to reference Choo HJ, Kim JH, Kwon OB et al (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791CrossRefPubMed Choo HJ, Kim JH, Kwon OB et al (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791CrossRefPubMed
48.
go back to reference López-Ríos F, Sánchez-Aragó M, García-García E et al (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67:9013–9017CrossRefPubMed López-Ríos F, Sánchez-Aragó M, García-García E et al (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67:9013–9017CrossRefPubMed
49.
go back to reference Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681PubMed Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681PubMed
Metadata
Title
Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle
Authors
K. Højlund
Z. Yi
N. Lefort
P. Langlais
B. Bowen
K. Levin
H. Beck-Nielsen
L. J. Mandarino
Publication date
01-03-2010
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 3/2010
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-009-1624-0

Other articles of this Issue 3/2010

Diabetologia 3/2010 Go to the issue