Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Rectal Cancer | Research

BMI and pelvimetry help to predict the duration of laparoscopic resection for low and middle rectal cancer

Authors: Wenhao Teng, Jingfu Liu, Meimei Chen, Weidong Zang, Aiwen Wu

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

In rectal cancer surgery, recent studies have found associations between clinical factors, especially pelvic parameters, and surgical difficulty; however, their findings are inconsistent because the studies use different criteria. This study aimed to evaluate common clinical factors that influence the operative time for the laparoscopic anterior resection of low and middle rectal cancer.

Methods

Patients who underwent laparoscopic radical resection of low and middle rectal cancer from January 2018 to December 2020 were retrospectively analyzed and classified according to the operative time. Preoperative clinical and magnetic resonance imaging (MRI)-related parameters were collected. Logistic regression analysis was used to identify factors for predicting the operative time.

Results

In total, 214 patients with a mean age of 60.3 ± 8.9 years were divided into two groups: the long operative time group (n = 105) and the short operative time group (n = 109). Univariate analysis revealed that the male sex, a higher body mass index (BMI, ≥ 24.0 kg/m2), preoperative treatment, a smaller pelvic inlet (< 11.0 cm), a deeper pelvic depth (≥ 10.7 cm) and a shorter intertuberous distance (< 10.1 cm) were significantly correlated with a longer operative time (P < 0.05). However, only BMI (OR 1.893, 95% CI 1.064–3.367, P = 0.030) and pelvic inlet (OR 0.439, 95% CI 0.240–0.804, P = 0.008) were independent predictors of operative time. Moreover, the rate of anastomotic leakage was higher in the long operative time group (P < 0.05).

Conclusion

Laparoscopic rectal resection is expected to take longer to perform in patients with a higher BMI or smaller pelvic inlet.
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.
2.
go back to reference Sung S, Kim SH, Lee JH, et al. Continuous effect of radial resection margin on recurrence and survival in rectal cancer patients who receive preoperative chemoradiation and curative surgery: a multicenter retrospective analysis. Int J Radiat Oncol Biol Phys. 2017;98(3):647–53.CrossRefPubMed Sung S, Kim SH, Lee JH, et al. Continuous effect of radial resection margin on recurrence and survival in rectal cancer patients who receive preoperative chemoradiation and curative surgery: a multicenter retrospective analysis. Int J Radiat Oncol Biol Phys. 2017;98(3):647–53.CrossRefPubMed
3.
go back to reference Madbouly KM, Hussein AM, Abdelzaher E. Long-term prognostic value of mesorectal grading after neoadjuvant chemoradiotherapy for rectal cancer. Am J Surg. 2014;208(3):332–41.CrossRefPubMed Madbouly KM, Hussein AM, Abdelzaher E. Long-term prognostic value of mesorectal grading after neoadjuvant chemoradiotherapy for rectal cancer. Am J Surg. 2014;208(3):332–41.CrossRefPubMed
4.
go back to reference Fleshman J, Branda ME, Sargent DJ, et al. Disease-free survival and local recurrence for laparoscopic resection compared with open resection of stage II to III rectal cancer: follow-up results of the ACOSOG Z6051 Randomized Controlled Trial. Ann Surg. 2019;269(4):589–95.CrossRefPubMed Fleshman J, Branda ME, Sargent DJ, et al. Disease-free survival and local recurrence for laparoscopic resection compared with open resection of stage II to III rectal cancer: follow-up results of the ACOSOG Z6051 Randomized Controlled Trial. Ann Surg. 2019;269(4):589–95.CrossRefPubMed
5.
go back to reference Bonjer HJ, Deijen CL, Haglind E, Group CIS. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med. 2015;373(2):194.CrossRefPubMed Bonjer HJ, Deijen CL, Haglind E, Group CIS. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med. 2015;373(2):194.CrossRefPubMed
6.
go back to reference Chen K, Cao G, Chen B, et al. Laparoscopic versus open surgery for rectal cancer: a meta-analysis of classic randomized controlled trials and high-quality nonrandomized studies in the last 5 years. Int J Surg. 2017;39:1–10.CrossRefPubMed Chen K, Cao G, Chen B, et al. Laparoscopic versus open surgery for rectal cancer: a meta-analysis of classic randomized controlled trials and high-quality nonrandomized studies in the last 5 years. Int J Surg. 2017;39:1–10.CrossRefPubMed
8.
go back to reference Hasegawa S, Nagayama S, Nomura A, Kawamura J, Sakai Y. Multimedia article. Autonomic nerve-preserving total mesorectal excision in the laparoscopic era. Dis Colon Rectum. 2008;51(8):1279–82.CrossRefPubMed Hasegawa S, Nagayama S, Nomura A, Kawamura J, Sakai Y. Multimedia article. Autonomic nerve-preserving total mesorectal excision in the laparoscopic era. Dis Colon Rectum. 2008;51(8):1279–82.CrossRefPubMed
9.
go back to reference Baik SH, Kim NK, Lee KY, et al. Factors influencing pathologic results after total mesorectal excision for rectal cancer: analysis of consecutive 100 cases. Ann Surg Oncol. 2008;15(3):721–8.CrossRefPubMed Baik SH, Kim NK, Lee KY, et al. Factors influencing pathologic results after total mesorectal excision for rectal cancer: analysis of consecutive 100 cases. Ann Surg Oncol. 2008;15(3):721–8.CrossRefPubMed
10.
go back to reference Leonard D, Penninckx F, Fieuws S, et al. Factors predicting the quality of total mesorectal excision for rectal cancer. Ann Surg. 2010;252(6):982–8.CrossRefPubMed Leonard D, Penninckx F, Fieuws S, et al. Factors predicting the quality of total mesorectal excision for rectal cancer. Ann Surg. 2010;252(6):982–8.CrossRefPubMed
11.
go back to reference Hong JS, Brown KGM, Waller J, Young CJ, Solomon MJ. The role of MRI pelvimetry in predicting technical difficulty and outcomes of open and minimally invasive total mesorectal excision: a systematic review. Tech Coloproctol. 2020;24(10):991–1000.CrossRefPubMed Hong JS, Brown KGM, Waller J, Young CJ, Solomon MJ. The role of MRI pelvimetry in predicting technical difficulty and outcomes of open and minimally invasive total mesorectal excision: a systematic review. Tech Coloproctol. 2020;24(10):991–1000.CrossRefPubMed
12.
go back to reference Escal L, Nougaret S, Guiu B, et al. MRI-based score to predict surgical difficulty in patients with rectal cancer. Br J Surg. 2018;105(1):140–6.CrossRefPubMed Escal L, Nougaret S, Guiu B, et al. MRI-based score to predict surgical difficulty in patients with rectal cancer. Br J Surg. 2018;105(1):140–6.CrossRefPubMed
14.
go back to reference Yamaoka Y, Yamaguchi T, Kinugasa Y, et al. Mesorectal fat area as a useful predictor of the difficulty of robotic-assisted laparoscopic total mesorectal excision for rectal cancer. Surg Endosc. 2019;33(2):557–66.CrossRefPubMed Yamaoka Y, Yamaguchi T, Kinugasa Y, et al. Mesorectal fat area as a useful predictor of the difficulty of robotic-assisted laparoscopic total mesorectal excision for rectal cancer. Surg Endosc. 2019;33(2):557–66.CrossRefPubMed
15.
go back to reference Yamamoto T, Kawada K, Kiyasu Y, et al. Prediction of surgical difficulty in minimally invasive surgery for rectal cancer by use of MRI pelvimetry. BJS Open. 2020;4(4):666–77.CrossRefPubMedPubMedCentral Yamamoto T, Kawada K, Kiyasu Y, et al. Prediction of surgical difficulty in minimally invasive surgery for rectal cancer by use of MRI pelvimetry. BJS Open. 2020;4(4):666–77.CrossRefPubMedPubMedCentral
16.
go back to reference Chen J, Sun Y, Chi P, Sun B. MRI pelvimetry-based evaluation of surgical difficulty in laparoscopic total mesorectal excision after neoadjuvant chemoradiation for male rectal cancer. Surg Today. 2021;51(7):1144–51.CrossRefPubMedPubMedCentral Chen J, Sun Y, Chi P, Sun B. MRI pelvimetry-based evaluation of surgical difficulty in laparoscopic total mesorectal excision after neoadjuvant chemoradiation for male rectal cancer. Surg Today. 2021;51(7):1144–51.CrossRefPubMedPubMedCentral
17.
go back to reference Deangelis N, Pigneur F, Martinez-Perez A, et al. Assessing surgical difficulty in locally advanced mid-low rectal cancer: the accuracy of two MRI-based predictive scores. Colorectal Dis. 2019;21(3):277–86.CrossRef Deangelis N, Pigneur F, Martinez-Perez A, et al. Assessing surgical difficulty in locally advanced mid-low rectal cancer: the accuracy of two MRI-based predictive scores. Colorectal Dis. 2019;21(3):277–86.CrossRef
18.
go back to reference Sun Y, Chen J, Ye C, et al. Pelvimetric and nutritional factors predicting surgical difficulty in laparoscopic resection for rectal cancer following preoperative chemoradiotherapy. World J Surg. 2021;45(7):2261–9.CrossRefPubMed Sun Y, Chen J, Ye C, et al. Pelvimetric and nutritional factors predicting surgical difficulty in laparoscopic resection for rectal cancer following preoperative chemoradiotherapy. World J Surg. 2021;45(7):2261–9.CrossRefPubMed
19.
go back to reference Ramme AJ, Hutzler LH, Cerfolio RJ, Bosco JA. Applying systems engineering to increase operating room efficiency. Bull Hosp Jt Dis. 2020;78(1):26–32. Ramme AJ, Hutzler LH, Cerfolio RJ, Bosco JA. Applying systems engineering to increase operating room efficiency. Bull Hosp Jt Dis. 2020;78(1):26–32.
21.
go back to reference Boggs SD, Tan DW, Watkins CL, Tsai MH. OR management and metrics: how it all fits together for the healthcare system. J Med Syst. 2019;43(6):147.CrossRefPubMed Boggs SD, Tan DW, Watkins CL, Tsai MH. OR management and metrics: how it all fits together for the healthcare system. J Med Syst. 2019;43(6):147.CrossRefPubMed
22.
go back to reference Bostrom P, Haapamaki MM, Rutegard J, Matthiessen P, Rutegard M. Population-based cohort study of the impact on postoperative mortality of anastomotic leakage after anterior resection for rectal cancer. BJS Open. 2019;3(1):106–11.CrossRefPubMed Bostrom P, Haapamaki MM, Rutegard J, Matthiessen P, Rutegard M. Population-based cohort study of the impact on postoperative mortality of anastomotic leakage after anterior resection for rectal cancer. BJS Open. 2019;3(1):106–11.CrossRefPubMed
23.
go back to reference Yang J, Chen Q, Jindou L, Cheng Y. The influence of anastomotic leakage for rectal cancer oncologic outcome: a systematic review and meta-analysis. J Surg Oncol. 2020;121(8):1283–97.CrossRefPubMed Yang J, Chen Q, Jindou L, Cheng Y. The influence of anastomotic leakage for rectal cancer oncologic outcome: a systematic review and meta-analysis. J Surg Oncol. 2020;121(8):1283–97.CrossRefPubMed
24.
go back to reference Qu H, Liu Y, Bi DS. Clinical risk factors for anastomotic leakage after laparoscopic anterior resection for rectal cancer: a systematic review and meta-analysis. Surg Endosc. 2015;29(12):3608–17.CrossRefPubMed Qu H, Liu Y, Bi DS. Clinical risk factors for anastomotic leakage after laparoscopic anterior resection for rectal cancer: a systematic review and meta-analysis. Surg Endosc. 2015;29(12):3608–17.CrossRefPubMed
25.
go back to reference Balciscueta Z, Uribe N, Caubet L, et al. Impact of the number of stapler firings on anastomotic leakage in laparoscopic rectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2020;24(9):919–25.CrossRefPubMed Balciscueta Z, Uribe N, Caubet L, et al. Impact of the number of stapler firings on anastomotic leakage in laparoscopic rectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2020;24(9):919–25.CrossRefPubMed
26.
go back to reference Ri M, Aikou S, Seto Y. Obesity as a surgical risk factor. Ann Gastroenterol Surg. 2018;2(1):13–21.CrossRefPubMed Ri M, Aikou S, Seto Y. Obesity as a surgical risk factor. Ann Gastroenterol Surg. 2018;2(1):13–21.CrossRefPubMed
27.
go back to reference Tjeertes EK, Hoeks SE, Beks SB, Valentijn TM, Hoofwijk AG, Stolker RJ. Obesity—a risk factor for postoperative complications in general surgery? BMC Anesthesiol. 2015;15:112.CrossRefPubMedPubMedCentral Tjeertes EK, Hoeks SE, Beks SB, Valentijn TM, Hoofwijk AG, Stolker RJ. Obesity—a risk factor for postoperative complications in general surgery? BMC Anesthesiol. 2015;15:112.CrossRefPubMedPubMedCentral
28.
go back to reference Wahl TS, Patel FC, Goss LE, Chu DI, Grams J, Morris MS. The obese colorectal surgery patient: surgical site infection and outcomes. Dis Colon Rectum. 2018;61(8):938–45.CrossRefPubMedPubMedCentral Wahl TS, Patel FC, Goss LE, Chu DI, Grams J, Morris MS. The obese colorectal surgery patient: surgical site infection and outcomes. Dis Colon Rectum. 2018;61(8):938–45.CrossRefPubMedPubMedCentral
29.
go back to reference Bell S, Kong JC, Wale R, et al. The effect of increasing body mass index on laparoscopic surgery for colon and rectal cancer. Colorectal Dis. 2018;20(9):778–88.CrossRefPubMed Bell S, Kong JC, Wale R, et al. The effect of increasing body mass index on laparoscopic surgery for colon and rectal cancer. Colorectal Dis. 2018;20(9):778–88.CrossRefPubMed
30.
go back to reference Fung A, Trabulsi N, Morris M, et al. Laparoscopic colorectal cancer resections in the obese: a systematic review. Surg Endosc. 2017;31(5):2072–88.CrossRefPubMed Fung A, Trabulsi N, Morris M, et al. Laparoscopic colorectal cancer resections in the obese: a systematic review. Surg Endosc. 2017;31(5):2072–88.CrossRefPubMed
31.
go back to reference Boyle KM, Chalmers AG, Finan PJ, Sagar PM, Burke D. Morphology of the mesorectum in patients with primary rectal cancer. Dis Colon Rectum. 2009;52(6):1122–9.CrossRefPubMed Boyle KM, Chalmers AG, Finan PJ, Sagar PM, Burke D. Morphology of the mesorectum in patients with primary rectal cancer. Dis Colon Rectum. 2009;52(6):1122–9.CrossRefPubMed
32.
go back to reference Zhou XC, Su M, Hu KQ, et al. CT pelvimetry and clinicopathological parameters in evaluation of the technical difficulties in performing open rectal surgery for mid-low rectal cancer. Oncol Lett. 2016;11(1):31–8.CrossRefPubMed Zhou XC, Su M, Hu KQ, et al. CT pelvimetry and clinicopathological parameters in evaluation of the technical difficulties in performing open rectal surgery for mid-low rectal cancer. Oncol Lett. 2016;11(1):31–8.CrossRefPubMed
33.
go back to reference Lee JM, Han YD, Cho MS, et al. Prediction of transabdominal total mesorectal excision difficulty according to the angle of pelvic floor muscle. Surg Endosc. 2020;34(7):3043–50.CrossRefPubMed Lee JM, Han YD, Cho MS, et al. Prediction of transabdominal total mesorectal excision difficulty according to the angle of pelvic floor muscle. Surg Endosc. 2020;34(7):3043–50.CrossRefPubMed
Metadata
Title
BMI and pelvimetry help to predict the duration of laparoscopic resection for low and middle rectal cancer
Authors
Wenhao Teng
Jingfu Liu
Meimei Chen
Weidong Zang
Aiwen Wu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01840-4

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue