Skip to main content
Top
Published in: Respiratory Research 1/2007

Open Access 01-12-2007 | Research

Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice

Authors: Renate Paddenberg, Philipp Stieger, Anna-Laura von Lilien, Petra Faulhammer, Anna Goldenberg, Harald H Tillmanns, Wolfgang Kummer, Ruediger C Braun-Dullaeus

Published in: Respiratory Research | Issue 1/2007

Login to get access

Abstract

Background

Chronic hypoxia induces pulmonary arterial hypertension (PAH). Smooth muscle cell (SMC) proliferation and hypertrophy are important contributors to the remodeling that occurs in chronic hypoxic pulmonary vasculature. We hypothesized that rapamycin (RAPA), a potent cell cycle inhibitor, prevents pulmonary hypertension in chronic hypoxic mice.

Methods

Mice were held either at normoxia (N; 21% O2) or at hypobaric hypoxia (H; 0.5 atm; ~10% O2). RAPA-treated animals (3 mg/kg*d, i.p.) were compared to animals injected with vehicle alone. Proliferative activity within the pulmonary arteries was quantified by staining for Ki67 (positive nuclei/vessel) and media area was quantified by computer-aided planimetry after immune-labeling for α-smooth muscle actin (pixel/vessel). The ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was used to determine right ventricular hypertrophy.

Results

Proliferative activity increased by 34% at day 4 in mice held under H (median: 0.38) compared to N (median: 0.28, p = 0.028) which was completely blocked by RAPA (median HO+RAPA: 0.23, p = 0.003). H-induced proliferation had leveled off within 3 weeks. At this time point media area had, however, increased by 53% from 91 (N) to 139 (H, p < 0.001) which was prevented by RAPA (H+RAPA: 102; p < 0.001). RV/[LV+S] ratio which had risen from 0.17 (N) to 0.26 (H, p < 0.001) was attenuated in the H+RAPA group (0.22, p = 0.041). For a therapeutic approach animals were exposed to H for 21 days followed by 21 days in H ± RAPA. Forty two days of H resulted in a media area of 129 (N: 83) which was significantly attenuated in RAPA-treated mice (H+RAPA: 92). RV/[LV+S] ratios supported prevention of PH (N 0.13; H 0.27; H+RAPA 0.17). RAPA treatment of N mice did not influence any parameter examined.

Conclusion

Therapy with rapamycin may represent a new strategy for the treatment of pulmonary hypertension.
Literature
1.
go back to reference Humbert M, Sitbon O, Simonneau G: Treatment of pulmonary arterial hypertension. N Engl J Med 2004, 351:1425–1436.CrossRefPubMed Humbert M, Sitbon O, Simonneau G: Treatment of pulmonary arterial hypertension. N Engl J Med 2004, 351:1425–1436.CrossRefPubMed
3.
go back to reference Wagenvoort CA: Vasoconstriction and medial hypertrophy in pulmonary hypertension. Circulation 1960, 22:535–546.CrossRefPubMed Wagenvoort CA: Vasoconstriction and medial hypertrophy in pulmonary hypertension. Circulation 1960, 22:535–546.CrossRefPubMed
4.
go back to reference Kay JM, Kahana LM, Rihal C: Diffuse smooth muscle proliferation of the lungs with severe pulmonary hypertension. Hum Pathol 1996, 27:969–974.CrossRefPubMed Kay JM, Kahana LM, Rihal C: Diffuse smooth muscle proliferation of the lungs with severe pulmonary hypertension. Hum Pathol 1996, 27:969–974.CrossRefPubMed
5.
go back to reference Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, Stenmark KR: Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media. J Clin Invest 1995, 96:273–281.CrossRefPubMedPubMedCentral Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, Stenmark KR: Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media. J Clin Invest 1995, 96:273–281.CrossRefPubMedPubMedCentral
6.
go back to reference Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F: Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005, 115:2811–2821.CrossRefPubMedPubMedCentral Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F: Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005, 115:2811–2821.CrossRefPubMedPubMedCentral
7.
go back to reference Ghofrani HA, Seeger W, Grimminger F: Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 2005, 353:1412–1413.CrossRefPubMed Ghofrani HA, Seeger W, Grimminger F: Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 2005, 353:1412–1413.CrossRefPubMed
8.
go back to reference Braun-Dullaeus RC, Mann MJ, Seay U, Zhang L, von Der Leyen HE, Morris RE, Dzau VJ: Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol 2001, 21:1152–1158.CrossRefPubMed Braun-Dullaeus RC, Mann MJ, Seay U, Zhang L, von Der Leyen HE, Morris RE, Dzau VJ: Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol 2001, 21:1152–1158.CrossRefPubMed
9.
go back to reference Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE: Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003, 349:1315–1323.CrossRefPubMed Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE: Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003, 349:1315–1323.CrossRefPubMed
10.
go back to reference Windecker S, Remondino A, Eberli FR, Juni P, Raber L, Wenaweser P, Togni M, Billinger M, Tuller D, Seiler C, Roffi M, Corti R, Sutsch G, Maier W, Luscher T, Hess OM, Egger M, Meier B: Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med 2005, 353:653–662.CrossRefPubMed Windecker S, Remondino A, Eberli FR, Juni P, Raber L, Wenaweser P, Togni M, Billinger M, Tuller D, Seiler C, Roffi M, Corti R, Sutsch G, Maier W, Luscher T, Hess OM, Egger M, Meier B: Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med 2005, 353:653–662.CrossRefPubMed
11.
go back to reference Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R: A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002, 346:1773–1780.CrossRefPubMed Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R: A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002, 346:1773–1780.CrossRefPubMed
12.
go back to reference Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ: Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. Faseb J 2002, 16:771–780.CrossRefPubMed Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ: Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. Faseb J 2002, 16:771–780.CrossRefPubMed
13.
go back to reference Gerasimovskaya EV, Tucker DA, Stenmark KR: Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation. J Appl Physiol 2005, 98:722–731.CrossRefPubMed Gerasimovskaya EV, Tucker DA, Stenmark KR: Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation. J Appl Physiol 2005, 98:722–731.CrossRefPubMed
14.
go back to reference Quinlan TR, Li D, Laubach VE, Shesely EG, Zhou N, Johns RA: eNOS-deficient mice show reduced pulmonary vascular proliferation and remodeling to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2000, 279:L641-L650.PubMed Quinlan TR, Li D, Laubach VE, Shesely EG, Zhou N, Johns RA: eNOS-deficient mice show reduced pulmonary vascular proliferation and remodeling to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2000, 279:L641-L650.PubMed
15.
go back to reference Goncharova EA, Ammit AJ, Irani C, Carroll RG, Eszterhas AJ, Panettieri RA, Krymskaya VP: PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2002, 283:L354-L363.CrossRefPubMed Goncharova EA, Ammit AJ, Irani C, Carroll RG, Eszterhas AJ, Panettieri RA, Krymskaya VP: PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2002, 283:L354-L363.CrossRefPubMed
17.
go back to reference Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H, Seeger W, Grimminger F: Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med 2004, 141:169–177.CrossRefPubMed Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H, Seeger W, Grimminger F: Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med 2004, 141:169–177.CrossRefPubMed
18.
go back to reference Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A, Wilkins MR: Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001, 104:424–428.CrossRefPubMed Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A, Wilkins MR: Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001, 104:424–428.CrossRefPubMed
19.
go back to reference Frisdal E, Gest V, Vieillard-Baron A, Levame M, Lepetit H, Eddahibi S, Lafuma C, Harf A, Adnot S, Dortho MP: Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir J 2001, 18:838–845.CrossRefPubMed Frisdal E, Gest V, Vieillard-Baron A, Levame M, Lepetit H, Eddahibi S, Lafuma C, Harf A, Adnot S, Dortho MP: Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir J 2001, 18:838–845.CrossRefPubMed
20.
go back to reference Weissmann N, Nollen M, Gerigk B, Ardeschir Ghofrani H, Schermuly RT, Gunther A, Quanz K, Fink L, Hanze J, Rose F, Seeger W, Grimminger F: Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. Am J Physiol Heart Circ Physiol 2003, 284:H931-H938.CrossRefPubMed Weissmann N, Nollen M, Gerigk B, Ardeschir Ghofrani H, Schermuly RT, Gunther A, Quanz K, Fink L, Hanze J, Rose F, Seeger W, Grimminger F: Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. Am J Physiol Heart Circ Physiol 2003, 284:H931-H938.CrossRefPubMed
21.
go back to reference Zhou L, Goldsmith AM, Bentley JK, Jia Y, Rodriguez ML, Abe MK, Fingar DC, Hershenson MB: 4E-binding protein phosphorylation and eukaryotic initiation factor-4E release are required for airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 2005, 33:195–202.CrossRefPubMedPubMedCentral Zhou L, Goldsmith AM, Bentley JK, Jia Y, Rodriguez ML, Abe MK, Fingar DC, Hershenson MB: 4E-binding protein phosphorylation and eukaryotic initiation factor-4E release are required for airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 2005, 33:195–202.CrossRefPubMedPubMedCentral
22.
go back to reference Yamakawa T, Tanaka S, Kamei J, Kadonosono K, Okuda K: Phosphatidylinositol 3-kinase in angiotensin II-induced hypertrophy of vascular smooth muscle cells. Eur J Pharmacol 2003, 478:39–46.CrossRefPubMed Yamakawa T, Tanaka S, Kamei J, Kadonosono K, Okuda K: Phosphatidylinositol 3-kinase in angiotensin II-induced hypertrophy of vascular smooth muscle cells. Eur J Pharmacol 2003, 478:39–46.CrossRefPubMed
23.
go back to reference Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M: Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest 2002, 122:326S-334S.CrossRefPubMed Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M: Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest 2002, 122:326S-334S.CrossRefPubMed
24.
go back to reference Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR: Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 1996, 98:2277–2283.CrossRefPubMedPubMedCentral Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR: Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 1996, 98:2277–2283.CrossRefPubMedPubMedCentral
25.
go back to reference Fukuda D, Sata M, Tanaka K, Nagai R: Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation 2005, 111:926–931.CrossRefPubMed Fukuda D, Sata M, Tanaka K, Nagai R: Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation 2005, 111:926–931.CrossRefPubMed
26.
go back to reference Nishimura T, Faul JL, Berry GJ, Veve I, Pearl RG, Kao PN: 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 2001, 163:498–502.CrossRefPubMed Nishimura T, Faul JL, Berry GJ, Veve I, Pearl RG, Kao PN: 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 2001, 163:498–502.CrossRefPubMed
27.
go back to reference Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D: Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol 1992, 22:307–325.CrossRefPubMed Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D: Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol 1992, 22:307–325.CrossRefPubMed
28.
go back to reference Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S: Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A 2001, 98:8798–8803.CrossRefPubMedPubMedCentral Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S: Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A 2001, 98:8798–8803.CrossRefPubMedPubMedCentral
29.
go back to reference Ito H, Adachi S, Tamamori M, Fujisaki H, Tanaka M, Lin M, Akimoto H, Marumo F, Hiroe M: Mild hypoxia induces hypertrophy of cultured neonatal rat cardiomyocytes: a possible endogenous endothelin-1-mediated mechanism. J Mol Cell Cardiol 1996, 28:1271–1277.CrossRefPubMed Ito H, Adachi S, Tamamori M, Fujisaki H, Tanaka M, Lin M, Akimoto H, Marumo F, Hiroe M: Mild hypoxia induces hypertrophy of cultured neonatal rat cardiomyocytes: a possible endogenous endothelin-1-mediated mechanism. J Mol Cell Cardiol 1996, 28:1271–1277.CrossRefPubMed
30.
go back to reference Proud CG: Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 2004, 63:403–413.CrossRefPubMed Proud CG: Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 2004, 63:403–413.CrossRefPubMed
31.
go back to reference Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S: Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 2003, 107:1664–1670.CrossRefPubMed Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S: Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 2003, 107:1664–1670.CrossRefPubMed
32.
go back to reference Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH: A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 1989, 341:755–757.CrossRefPubMed Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH: A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 1989, 341:755–757.CrossRefPubMed
33.
go back to reference Ong AT, Serruys PW: Technology Insight: an overview of research in drug-eluting stents. Nat Clin Pract Cardiovasc Med 2005, 2:647–658.CrossRefPubMed Ong AT, Serruys PW: Technology Insight: an overview of research in drug-eluting stents. Nat Clin Pract Cardiovasc Med 2005, 2:647–658.CrossRefPubMed
34.
go back to reference Keogh A, Richardson M, Ruygrok P, Spratt P, Galbraith A, O'Driscoll G, Macdonald P, Esmore D, Muller D, Faddy S: Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 2004, 110:2694–2700.CrossRefPubMed Keogh A, Richardson M, Ruygrok P, Spratt P, Galbraith A, O'Driscoll G, Macdonald P, Esmore D, Muller D, Faddy S: Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 2004, 110:2694–2700.CrossRefPubMed
Metadata
Title
Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice
Authors
Renate Paddenberg
Philipp Stieger
Anna-Laura von Lilien
Petra Faulhammer
Anna Goldenberg
Harald H Tillmanns
Wolfgang Kummer
Ruediger C Braun-Dullaeus
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2007
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-8-15

Other articles of this Issue 1/2007

Respiratory Research 1/2007 Go to the issue