Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Radiotherapy | Research article

Decision curve analysis apropos of choice of preferable treatment positioning during breast irradiation

Authors: Ferenc Rárosi, Krisztina Boda, Zsuzsanna Kahán, Zoltán Varga

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

Radiotherapy is a standard treatment option for breast cancer, but it may lead to significant late morbidity, including radiation heart damage. Breast irradiation performed individually in the supine or prone position may aid in minimizing the irradiation dose to the heart and LAD coronary artery. A series of CT scans and therapy plans are needed in both positions for the ‘gold standard’ decision on the preferable treatment position. This method is expensive with respect to technology and physician workload.
Our ultimate goal is to develop a predictive tool to identify the preferable treatment position using easily measurable patient characteristics. In this article, we describe the details of how model building and consequently validation of the best model are done.

Methods

Different models were used: both logistic regression and multiple linear regressions were used to estimate the LAD mean dose difference (the difference between the mean dose to the LAD in the supine position versus prone position); predicted dose differences were analysed compared to the ‘gold standard’ values, and the best model was selected accordingly. The final model was checked by random cross-validation. In addition to generally used measures (ROC and Brier score), decision curves were employed to evaluate the performance of the models.

Results

ROC analysis demonstrated that none of the predictors alone was satisfactory. Multiple logistic regression models and the linear regression model lead to high values of net benefit for a wide range of threshold probabilities. Multiple linear regression seemed to be the most useful model. We also present the results of the random cross-validation for this model (i.e. sensitivity of 80.7% and specificity of 87.5%).

Conclusions

Decision curves proved to be useful to evaluate our models. Our results indicate that any of the models could be implemented in clinical practice, but the linear regression model is the most useful model to facilitate the radiation treatment decision. In addition, it is in use in everyday practice in the Department of Oncotherapy, University of Szeged, Hungary.
Literature
1.
go back to reference McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.CrossRef McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.CrossRef
2.
go back to reference Andratschke N, Maurer J, Molls M, Trott KR. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention. Radiother Oncol. 2011;100:160–6.CrossRef Andratschke N, Maurer J, Molls M, Trott KR. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention. Radiother Oncol. 2011;100:160–6.CrossRef
3.
go back to reference Shah C, Badiyan S, Berry S, et al. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy. Radiother Oncol. 2014;112:9–16.CrossRef Shah C, Badiyan S, Berry S, et al. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy. Radiother Oncol. 2014;112:9–16.CrossRef
4.
go back to reference Taylor C.W.,-Kirby A.M. Cardiac Side-effects From Breast Cancer Radiotherapy. Clinicalm Oncology 2015; 27: 621–629.CrossRef Taylor C.W.,-Kirby A.M. Cardiac Side-effects From Breast Cancer Radiotherapy. Clinicalm Oncology 2015; 27: 621–629.CrossRef
5.
go back to reference Shah C, Tendulkar R, Smile T. el al. Adjuvant radiotherapy in early-stage breast Cancer: evidence-based options. Ann Surg Oncol. 2016;23:3880–90.CrossRef Shah C, Tendulkar R, Smile T. el al. Adjuvant radiotherapy in early-stage breast Cancer: evidence-based options. Ann Surg Oncol. 2016;23:3880–90.CrossRef
6.
go back to reference Varga Z, Cserhati A, Rarosi F, et al. Individualized positioning for maximum heart protection during breast irradiation. Acta Oncol. 2014;53(1):58–64.CrossRef Varga Z, Cserhati A, Rarosi F, et al. Individualized positioning for maximum heart protection during breast irradiation. Acta Oncol. 2014;53(1):58–64.CrossRef
7.
go back to reference Kahan Z, Rarosi F, Gaal S, et al. A simple clinical method for predicting the benefit of prone vs. supine positioning in reducing heart exposure during left breast radiotherapy. Radiother Oncol. 2018;126(3):487–92.CrossRef Kahan Z, Rarosi F, Gaal S, et al. A simple clinical method for predicting the benefit of prone vs. supine positioning in reducing heart exposure during left breast radiotherapy. Radiother Oncol. 2018;126(3):487–92.CrossRef
8.
go back to reference Kirby AM, Evans PM, Donovan EM, Convery HM, Haviland JS, Yarnold JR. Prone versus supine positioning for whole and partial-breast radiotherapy: a comparison of non-target tissue dosimetry. Radiother Oncol. 2010;96:178–84.CrossRef Kirby AM, Evans PM, Donovan EM, Convery HM, Haviland JS, Yarnold JR. Prone versus supine positioning for whole and partial-breast radiotherapy: a comparison of non-target tissue dosimetry. Radiother Oncol. 2010;96:178–84.CrossRef
9.
go back to reference Formenti SC, Gidea-Addeo D, Goldberg JD, Roses DF, Guth A, Rosenstein BS, et al. Phase I–II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol. 2007;25:2236–42.CrossRef Formenti SC, Gidea-Addeo D, Goldberg JD, Roses DF, Guth A, Rosenstein BS, et al. Phase I–II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol. 2007;25:2236–42.CrossRef
10.
go back to reference Buijsen J, Jager JJ, Bovendeerd J, Voncken R, Borger JH, Boersma LJ, et al. Prone breast irradiation for pendulous breasts. Radiother Oncol. 2007;82:337–40.CrossRef Buijsen J, Jager JJ, Bovendeerd J, Voncken R, Borger JH, Boersma LJ, et al. Prone breast irradiation for pendulous breasts. Radiother Oncol. 2007;82:337–40.CrossRef
11.
go back to reference Zhao X, Wong EK, Wang Y, Lymberis S, Wen B, Formenti S, et al. A support vector machine (SVM) for predicting preferred treatment position in radiotherapy of patients with breast cancer. Med Phys. 2010;37:5341–50.CrossRef Zhao X, Wong EK, Wang Y, Lymberis S, Wen B, Formenti S, et al. A support vector machine (SVM) for predicting preferred treatment position in radiotherapy of patients with breast cancer. Med Phys. 2010;37:5341–50.CrossRef
12.
go back to reference Lymberis SC, Dewyngaert JK, Parhar P, Chhabra AM, Fenton-Kerimian M, Chang J, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys. 2012;84:902–9.CrossRef Lymberis SC, Dewyngaert JK, Parhar P, Chhabra AM, Fenton-Kerimian M, Chang J, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys. 2012;84:902–9.CrossRef
13.
go back to reference Formenti SC, DeWyngaert JK, Jozsef G, Goldberg JD. Prone vs supine positioning for breast cancer radiotherapy. JAMA. 2012;308:861–3.CrossRef Formenti SC, DeWyngaert JK, Jozsef G, Goldberg JD. Prone vs supine positioning for breast cancer radiotherapy. JAMA. 2012;308:861–3.CrossRef
14.
go back to reference Varga Z, Hideghéty K, Mező T, Nikolényi A, Thurzó L, Kahán Z. Individual positioning: a comparative study of adjuvant breast radiotherapy in the prone versus supine position. Int J Radiat Oncol Biol Phys. 2009;75:94–100.CrossRef Varga Z, Hideghéty K, Mező T, Nikolényi A, Thurzó L, Kahán Z. Individual positioning: a comparative study of adjuvant breast radiotherapy in the prone versus supine position. Int J Radiat Oncol Biol Phys. 2009;75:94–100.CrossRef
15.
go back to reference Aznar MC, Korreman SS, Pedersen AN, Persson GF, Josipovic M, Specht L. Evaluation of dose to cardiac structures during breast irradiation. Br J Radiol. 2011;84:743–6.CrossRef Aznar MC, Korreman SS, Pedersen AN, Persson GF, Josipovic M, Specht L. Evaluation of dose to cardiac structures during breast irradiation. Br J Radiol. 2011;84:743–6.CrossRef
16.
go back to reference Griem KL, Fetherston P, Kuznetsova M, Foster GS, Shott S, CHU J, et al. Three-dimensional photon dosimetry: a comparison of treatment of the intact breast in the supine and prone position. Int J Radiation Oncology Biol Phys. 2003;57:891–9.CrossRef Griem KL, Fetherston P, Kuznetsova M, Foster GS, Shott S, CHU J, et al. Three-dimensional photon dosimetry: a comparison of treatment of the intact breast in the supine and prone position. Int J Radiation Oncology Biol Phys. 2003;57:891–9.CrossRef
17.
go back to reference Agresti A. Categorical data analysis. 2nd ed. New York: Wiley-Interscience; 2002.CrossRef Agresti A. Categorical data analysis. 2nd ed. New York: Wiley-Interscience; 2002.CrossRef
18.
go back to reference Obuchowski NA, Lieber ML, Wians FH. ROC curves in clinical chemistry: uses, misuses, and possible solutions. Clin Chem. 2004;50(7):1118–25.CrossRef Obuchowski NA, Lieber ML, Wians FH. ROC curves in clinical chemistry: uses, misuses, and possible solutions. Clin Chem. 2004;50(7):1118–25.CrossRef
19.
go back to reference Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–74.CrossRef Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–74.CrossRef
20.
go back to reference Baker SG, Kramer BS. Peirce, Youden, and receiver operating characteristic curves. Am Stat. 2007;61(4):343–6.CrossRef Baker SG, Kramer BS. Peirce, Youden, and receiver operating characteristic curves. Am Stat. 2007;61(4):343–6.CrossRef
21.
go back to reference Lopez-Raton M, Cadarso-Suarez C, Rodriguez-Alvarez MX, Gude-Sampedro F. OptimalCutpoints: an R package for selecting optimal Cutpoints in diagnostic tests. J Stat Softw. 2014;61(8):1–36.CrossRef Lopez-Raton M, Cadarso-Suarez C, Rodriguez-Alvarez MX, Gude-Sampedro F. OptimalCutpoints: an R package for selecting optimal Cutpoints in diagnostic tests. J Stat Softw. 2014;61(8):1–36.CrossRef
22.
go back to reference Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–38.CrossRef Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–38.CrossRef
23.
go back to reference Brier GW. Verification of forecasts expressed in terms of probability. Mon Wea Rev. 1950;78:1–3.CrossRef Brier GW. Verification of forecasts expressed in terms of probability. Mon Wea Rev. 1950;78:1–3.CrossRef
24.
go back to reference Peirce CS. The numerical measure of the success of predictions. Science. 1884;4:453–4.CrossRef Peirce CS. The numerical measure of the success of predictions. Science. 1884;4:453–4.CrossRef
25.
go back to reference Würschmidt F, Stoltenberg S, Kretschmer M, Petersen C. Incidental dose to coronary arteries is higher in prone than in supine whole breast irradiation. A dosimetric comparison in adjuvant radiotherapy of early stage breast cancer. Strahlenther Onkol. 2014;190:563–8.CrossRef Würschmidt F, Stoltenberg S, Kretschmer M, Petersen C. Incidental dose to coronary arteries is higher in prone than in supine whole breast irradiation. A dosimetric comparison in adjuvant radiotherapy of early stage breast cancer. Strahlenther Onkol. 2014;190:563–8.CrossRef
26.
go back to reference Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRef Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRef
Metadata
Title
Decision curve analysis apropos of choice of preferable treatment positioning during breast irradiation
Authors
Ferenc Rárosi
Krisztina Boda
Zsuzsanna Kahán
Zoltán Varga
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0927-4

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue