Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2020

Open Access 01-12-2020 | Radiotherapy | Research

Clinical features, treatment, and survival outcome of primary pulmonary NUT midline carcinoma

Authors: Xiao-Hong Xie, Li-Qiang Wang, Yin-Yin Qin, Xin-Qing Lin, Zhan-Hong Xie, Ming Liu, Jie-Xia Zhang, Ming Ouyang, Jun Liu, Ying-Ying Gu, Shi-Yue Li, Cheng-Zhi Zhou

Published in: Orphanet Journal of Rare Diseases | Issue 1/2020

Login to get access

Abstract

Objective

NUT midline carcinoma (NMC), a rare type of squamous cell carcinoma, is genetically characterised by NUT midline carcinoma family member 1 (NUTM1) gene rearrangement. NMC can arise from the lungs; however, there is no standard for the management of primary pulmonary NMC. This study aimed to confirm the clinical features and report the treatments, especially with immune checkpoint inhibitors (ICIs), and outcomes of patients with primary pulmonary NMC.

Methods

A retrospective review of patients with primary pulmonary NMC was performed in the First Affiliated Hospital of Guangzhou Medical University between January 2015 and December 2018. Clinical manifestations as well as radiographic and pathological findings were recorded. Whole-exome sequencing (WES), a predictor for ICI response, was used to determine the tumour mutational burden (TMB). Treatments, especially by immune checkpoint blockade, and patient survival were analysed.

Results

Seven patients with primary pulmonary mass (four men and three women) with a mean age of 42 years (range, 23–74) who were diagnosed with NMC according to NUT immunohistochemistry staining were included for analysis. One patient had a rare fusion of CHRM5-NUTM1 by tumour sequencing. A wide range of TMB (1.75–73.81 mutations/Mbp) was observed. The initial treatments included chemotherapy (5/7, 71.4%), surgery (1/7, 14.3%), and radiotherapy (1/7, 14.3%). Five patients (5/7, 71.4%) received ICIs (programmed cell death protein 1 [PD1]/programmed cell death ligand 1 [PDL1] monoclonal antibody) as second- or higher-line treatments. The median overall survival (OS) was 4.1 months (range, 1.5–26.7 months).

Conclusions

Patients with primary pulmonary NMC have a poor prognosis and chemotherapy is often preferred. Checkpoint immunotherapy is a good option as the second- or higher-line treatment. TMB seems to be not associated with OS.
Literature
1.
go back to reference French CA, Kutok JL, Faquin WC, Toretsky JA, Antonescu CR, Griffin CA, et al. Midline carcinoma of children and young adults with NUT rearrangement. J Clin Oncol. 2004;22:4135–9.CrossRef French CA, Kutok JL, Faquin WC, Toretsky JA, Antonescu CR, Griffin CA, et al. Midline carcinoma of children and young adults with NUT rearrangement. J Clin Oncol. 2004;22:4135–9.CrossRef
2.
go back to reference French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63:304–7.PubMed French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63:304–7.PubMed
3.
go back to reference French CA, Rahman S, Walsh EM, Kühnle S, Grayson AR, Lemieux ME, et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov. 2014;4:929–41.CrossRef French CA, Rahman S, Walsh EM, Kühnle S, Grayson AR, Lemieux ME, et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov. 2014;4:929–41.CrossRef
4.
go back to reference French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27:2237–42.CrossRef French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27:2237–42.CrossRef
5.
go back to reference French CA. NUT carcinoma: clinicopathologic features, pathogenesis, and treatment. Pathol Int. 2018;68:583–95.CrossRef French CA. NUT carcinoma: clinicopathologic features, pathogenesis, and treatment. Pathol Int. 2018;68:583–95.CrossRef
6.
go back to reference Bauer DE, Mitchell CM, Strait KM, Lathan CS, Stelow EB, Lüer SC, et al. Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clin Cancer Res. 2012;18:5773–9.CrossRef Bauer DE, Mitchell CM, Strait KM, Lathan CS, Stelow EB, Lüer SC, et al. Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clin Cancer Res. 2012;18:5773–9.CrossRef
7.
go back to reference Grace Chau N, Ma C, Danga K. A novel prognostic risk classification model for NUT midline carcinoma: a largest cohort analysis from the NMC registry. J Clin Oncol. 2018;36:6085.CrossRef Grace Chau N, Ma C, Danga K. A novel prognostic risk classification model for NUT midline carcinoma: a largest cohort analysis from the NMC registry. J Clin Oncol. 2018;36:6085.CrossRef
8.
go back to reference Lage G, Shekhovtsova M, Wen X. NUT carcinoma: a report of two cases and review of the literature. Virchows Arch. 2018;473:s111–2. Lage G, Shekhovtsova M, Wen X. NUT carcinoma: a report of two cases and review of the literature. Virchows Arch. 2018;473:s111–2.
9.
go back to reference Sholl LM, Nishino M, Pokharel S, Mari MK, French CA, Janne PA, et al. Primary pulmonary NUT midline carcinoma: clinical, radiographic, and pathologic characterizations. J Thorac Oncol. 2015;10:951–9.CrossRef Sholl LM, Nishino M, Pokharel S, Mari MK, French CA, Janne PA, et al. Primary pulmonary NUT midline carcinoma: clinical, radiographic, and pathologic characterizations. J Thorac Oncol. 2015;10:951–9.CrossRef
10.
go back to reference El-Mofty SK. HPV-related squamous cell carcinoma variants in the head and neck. Head Neck Pathol. 2012;6(Suppl 1):S55–62.CrossRef El-Mofty SK. HPV-related squamous cell carcinoma variants in the head and neck. Head Neck Pathol. 2012;6(Suppl 1):S55–62.CrossRef
11.
go back to reference Thompson LDR. Squamous cell carcinoma variants of the head and neck. Curr Diagn Pathol. 2003;9:384–96.CrossRef Thompson LDR. Squamous cell carcinoma variants of the head and neck. Curr Diagn Pathol. 2003;9:384–96.CrossRef
12.
go back to reference Haack H, Johnson LA, Fry CJ, Katherine C, Polakiewicz RD, Stelow EB, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol. 2009;33:984–91.CrossRef Haack H, Johnson LA, Fry CJ, Katherine C, Polakiewicz RD, Stelow EB, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol. 2009;33:984–91.CrossRef
13.
go back to reference Tanaka M, Kato K, Gomi K, Mariko Y, Tetsu N, Noriko A, et al. NUT midline carcinoma: report of 2 cases suggestive of pulmonary origin. Am J Surg Pathol. 2012;36:381–8.CrossRef Tanaka M, Kato K, Gomi K, Mariko Y, Tetsu N, Noriko A, et al. NUT midline carcinoma: report of 2 cases suggestive of pulmonary origin. Am J Surg Pathol. 2012;36:381–8.CrossRef
14.
go back to reference Alekseyenko AA, Walsh EM, Zee BM, Pakozdi T, Hsi P, Lemieux ME, et al. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E4184–92.CrossRef Alekseyenko AA, Walsh EM, Zee BM, Pakozdi T, Hsi P, Lemieux ME, et al. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E4184–92.CrossRef
15.
go back to reference Gatalica Z, Swensen J, Stevens TM. NUTM1 gene rearranged neoplasia. Lab Investig. 2018;98:698–9. Gatalica Z, Swensen J, Stevens TM. NUTM1 gene rearranged neoplasia. Lab Investig. 2018;98:698–9.
16.
go back to reference Choi M, Kadara H, Zhang J, Cuentas EP, Canales JR, Gaffney SG, et al. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function. Ann Oncol. 2017;28:83–9.CrossRef Choi M, Kadara H, Zhang J, Cuentas EP, Canales JR, Gaffney SG, et al. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function. Ann Oncol. 2017;28:83–9.CrossRef
17.
go back to reference Kadara H, Choi M, Zhang J, Cuentas EP, Canales JR, Gaffney SG, et al. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol. 2017;28:75–82.CrossRef Kadara H, Choi M, Zhang J, Cuentas EP, Canales JR, Gaffney SG, et al. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol. 2017;28:75–82.CrossRef
18.
go back to reference Mao N, Liao Z, Wu J, Liang K, Wang SF, Qin SM, et al. Diagnosis of NUT carcinoma of lung origin by next-generation sequencing: case report and review of the literature. Cancer Biol Ther. 2019;20:150–6.CrossRef Mao N, Liao Z, Wu J, Liang K, Wang SF, Qin SM, et al. Diagnosis of NUT carcinoma of lung origin by next-generation sequencing: case report and review of the literature. Cancer Biol Ther. 2019;20:150–6.CrossRef
19.
go back to reference Chau NG, Hurwitz S, Mitchell CM, Aserlind A, Grunfeld N, Kaplan L, et al. Intensive treatment and survival outcomes in NUT midline carcinoma of the head and neck. Cancer. 2016;122:3632–40.CrossRef Chau NG, Hurwitz S, Mitchell CM, Aserlind A, Grunfeld N, Kaplan L, et al. Intensive treatment and survival outcomes in NUT midline carcinoma of the head and neck. Cancer. 2016;122:3632–40.CrossRef
20.
go back to reference Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507–23.CrossRef Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507–23.CrossRef
21.
go back to reference Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, De LM, et al. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 2016;6:492–500.CrossRef Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, De LM, et al. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 2016;6:492–500.CrossRef
23.
go back to reference Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Ping L, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22:2865–72.CrossRef Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Ping L, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22:2865–72.CrossRef
24.
go back to reference Schouten LJ, Rutten J, Huveneers HA, Albert T. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94:2698–705.CrossRef Schouten LJ, Rutten J, Huveneers HA, Albert T. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94:2698–705.CrossRef
25.
go back to reference Evans AG, French CA, Cameron MJ, Christopher DM, Jackman DM, Lathan CS, et al. Pathologic characteristics of nut midline carcinoma arising in the mediastinum. Am J Surg Pathol. 2012;36:1222–7.CrossRef Evans AG, French CA, Cameron MJ, Christopher DM, Jackman DM, Lathan CS, et al. Pathologic characteristics of nut midline carcinoma arising in the mediastinum. Am J Surg Pathol. 2012;36:1222–7.CrossRef
26.
go back to reference Parikh SA, French CA, Costello BA, Marks RS, Dronca RS, Nerby CL, et al. NUT midline carcinoma: an aggressive intrathoracic neoplasm. J Thorac Oncol. 2013;8:1335–8.CrossRef Parikh SA, French CA, Costello BA, Marks RS, Dronca RS, Nerby CL, et al. NUT midline carcinoma: an aggressive intrathoracic neoplasm. J Thorac Oncol. 2013;8:1335–8.CrossRef
27.
go back to reference Schilsky JB, Ni A, Ahn L, Datta S, Travis WD, Kris MG, et al. Prognostic impact of TTF-1 expression in patients with stage IV lung adenocarcinomas. Lung Cancer. 2017;108:205–11.CrossRef Schilsky JB, Ni A, Ahn L, Datta S, Travis WD, Kris MG, et al. Prognostic impact of TTF-1 expression in patients with stage IV lung adenocarcinomas. Lung Cancer. 2017;108:205–11.CrossRef
28.
go back to reference Van Allen EM, Wagle N, Stojanov P, Perrin DL, Kristian C, Sara M, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20:682–8.CrossRef Van Allen EM, Wagle N, Stojanov P, Perrin DL, Kristian C, Sara M, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20:682–8.CrossRef
29.
go back to reference Grayson AR, Walsh EM, Cameron MJ, Godec J, Ashworth T, Ambrose JM, et al. MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene. 2014;33:1736–42.CrossRef Grayson AR, Walsh EM, Cameron MJ, Godec J, Ashworth T, Ambrose JM, et al. MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene. 2014;33:1736–42.CrossRef
30.
go back to reference Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Tibor C, Fülöp A, et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37:537–46.CrossRef Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Tibor C, Fülöp A, et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37:537–46.CrossRef
31.
go back to reference Rizvi H, Sanchez-Vega F, La K, Jonsson P, Halpenny D, Plodkowski A, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.CrossRef Rizvi H, Sanchez-Vega F, La K, Jonsson P, Halpenny D, Plodkowski A, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.CrossRef
32.
go back to reference Goodman AM, Kato S, Bazhenova L. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.CrossRef Goodman AM, Kato S, Bazhenova L. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.CrossRef
33.
go back to reference Theelen WSME, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts JGJV, et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 2019;5:1276–82.CrossRef Theelen WSME, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts JGJV, et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 2019;5:1276–82.CrossRef
34.
go back to reference Rim CH, Kim Y, Kim CY, Yoon WS, Yang DS. Is stereotactic body radiotherapy for ultra-central lung tumor a feasible option? A systemic review and meta-analysis. Int J Radiat Biol. 2019;95:329–37.CrossRef Rim CH, Kim Y, Kim CY, Yoon WS, Yang DS. Is stereotactic body radiotherapy for ultra-central lung tumor a feasible option? A systemic review and meta-analysis. Int J Radiat Biol. 2019;95:329–37.CrossRef
Metadata
Title
Clinical features, treatment, and survival outcome of primary pulmonary NUT midline carcinoma
Authors
Xiao-Hong Xie
Li-Qiang Wang
Yin-Yin Qin
Xin-Qing Lin
Zhan-Hong Xie
Ming Liu
Jie-Xia Zhang
Ming Ouyang
Jun Liu
Ying-Ying Gu
Shi-Yue Li
Cheng-Zhi Zhou
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
Orphanet Journal of Rare Diseases / Issue 1/2020
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-020-01449-x

Other articles of this Issue 1/2020

Orphanet Journal of Rare Diseases 1/2020 Go to the issue