Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2016

Open Access 01-12-2016 | Research

Radiation field size and dose determine oncologic outcome in esophageal cancer

Authors: Cengiz Gemici, Gokhan Yaprak, Hasan Fevzi Batirel, Mahmut Ilhan, Alpaslan Mayadagli

Published in: World Journal of Surgical Oncology | Issue 1/2016

Login to get access

Abstract

Background

Locoregional recurrence is a major problem in esophageal cancer patients treated with definitive concomitant chemoradiotherapy. Approximately half of the patients fail locoregionally. We analyzed the impact of enlarged radiation field size and higher radiation dose incorporated to chemoradiotherapy on oncologic outcome.

Methods

Seventy-four consecutive patients with histologically proven nonmetastatic squamous or adenocarcinoma of the esophagus were included in this retrospective analysis. All patients were locally advanced cT3–T4 and/or cN0-1. Treatment consisted of either definitive concomitant chemoradiotherapy (Def-CRT) (n = 49, 66 %) or preoperative concomitant chemoradiotherapy (Pre-CRT) followed by surgical resection (n = 25, 34 %). Patients were treated with longer radiation fields. Clinical target volume (CTV) was obtained by giving 8–10 cm margins to the craniocaudal borders of gross tumor volume (GTV) instead of 4–5 cm globally accepted margins, and some patients in Def-CRT group received radiation doses higher than 50 Gy.

Results

Isolated locoregional recurrences were observed in 9 out of 49 patients (18 %) in the Def-CRT group and in 1 out of 25 patients (3.8 %) in the Pre-CRT group (p = 0.15). The 5-year survival rate was 59 % in the Def-CRT group and 50 % in the Pre-CRT group (p = 0.72). Radiation dose was important in the Def-CRT group. Patients treated with >50 Gy (11 out of 49 patients) had better survival with respect to patients treated with 50 Gy (38 out of 49 patients). Five-year survivals were 91 and 50 %, respectively (p = 0.013).

Conclusions

Radiation treatment planning by enlarged radiation fields in esophageal cancer decreases locoregional recurrences considerably with respect to the results reported in the literature by standard radiation fields (18 vs >50 %). Radiation dose is as important as radiation field size; patients in the Def-CRT group treated with ≥50 Gy had better survival in comparison to patients treated with 50 Gy.
Literature
1.
go back to reference Nakagawa S, Kanda T, Kosugi S, et al. Recurrence pattern of squamous cell carcinoma of the thoracic esophagus after extended radical esophagectomy with three-field lmphadenectomy. J Am Coll Surg. 2004;198:205–11.CrossRefPubMed Nakagawa S, Kanda T, Kosugi S, et al. Recurrence pattern of squamous cell carcinoma of the thoracic esophagus after extended radical esophagectomy with three-field lmphadenectomy. J Am Coll Surg. 2004;198:205–11.CrossRefPubMed
2.
go back to reference Hulscher JB, vanSandick JW, Tijssen JG, et al. The recurrence pattern of esophageal carcinoma after transhiatal resection. J Am Coll Surg. 2000;191:143–8.CrossRefPubMed Hulscher JB, vanSandick JW, Tijssen JG, et al. The recurrence pattern of esophageal carcinoma after transhiatal resection. J Am Coll Surg. 2000;191:143–8.CrossRefPubMed
3.
go back to reference Al-Sarraf M, Martz K, Herskovic A, et al. Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol. 1997;15:277–84.PubMed Al-Sarraf M, Martz K, Herskovic A, et al. Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol. 1997;15:277–84.PubMed
4.
go back to reference Minsky BD, Pajak TF, Ginsberg RJ, et al. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002;20:1167–74.CrossRefPubMed Minsky BD, Pajak TF, Ginsberg RJ, et al. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002;20:1167–74.CrossRefPubMed
5.
go back to reference Czito BG. Esophageal cancer. In: Halperin EC, Wazer DE, Perez CA, Brady LW, editors. Principles and practice of radiation oncology. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2013. p. 995–1022. Czito BG. Esophageal cancer. In: Halperin EC, Wazer DE, Perez CA, Brady LW, editors. Principles and practice of radiation oncology. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2013. p. 995–1022.
6.
go back to reference Tachimori Y, Nagai Y, Kanamori N, et al. Pattern of lymph node metastasis of esophageal squamous cell carcinoma based on the anatomical lymphatic drainage system. Dis Esophagus. 2011;24:33–8.CrossRefPubMed Tachimori Y, Nagai Y, Kanamori N, et al. Pattern of lymph node metastasis of esophageal squamous cell carcinoma based on the anatomical lymphatic drainage system. Dis Esophagus. 2011;24:33–8.CrossRefPubMed
7.
go back to reference Dresner SM, Lamb PJ, Bennett MK, et al. The pattern of metastatic lymph node dissemination from adenocarcinoma of the esophagogastric junction. Surgery. 2001;129:103–9.CrossRefPubMed Dresner SM, Lamb PJ, Bennett MK, et al. The pattern of metastatic lymph node dissemination from adenocarcinoma of the esophagogastric junction. Surgery. 2001;129:103–9.CrossRefPubMed
8.
go back to reference Hosch SB, Stoecklein NH, Pichlmeier U, et al. Esophageal cancer: the mode of lymphatic tumor cell spread and its prognostic significance. J Clin Oncol. 2001;19:1970–5.PubMed Hosch SB, Stoecklein NH, Pichlmeier U, et al. Esophageal cancer: the mode of lymphatic tumor cell spread and its prognostic significance. J Clin Oncol. 2001;19:1970–5.PubMed
9.
go back to reference Akiyama H, Tsurumaru M, Kawamura T, et al. Principles of surgical treatment for carcinoma of the esophagus: analysis of lymph node involvement. Ann Surg. 1981;194:438–46.CrossRefPubMedPubMedCentral Akiyama H, Tsurumaru M, Kawamura T, et al. Principles of surgical treatment for carcinoma of the esophagus: analysis of lymph node involvement. Ann Surg. 1981;194:438–46.CrossRefPubMedPubMedCentral
10.
go back to reference Huang W, Li B, Gong H, et al. Pattern of lymph node metastases and its implication in radiotherapeutic clinical target volume in patients with thoracic esophageal squamous cell carcinoma: a report of 1077 cases. Radiother Oncol. 2010;95:229–33.CrossRefPubMed Huang W, Li B, Gong H, et al. Pattern of lymph node metastases and its implication in radiotherapeutic clinical target volume in patients with thoracic esophageal squamous cell carcinoma: a report of 1077 cases. Radiother Oncol. 2010;95:229–33.CrossRefPubMed
11.
go back to reference Katayama A, Mafune K, Tanaka Y, et al. Autopsy findings in patients after curative esophagectomy for esophageal carcinoma. J Am Coll Surg. 2003;196:866–73.CrossRefPubMed Katayama A, Mafune K, Tanaka Y, et al. Autopsy findings in patients after curative esophagectomy for esophageal carcinoma. J Am Coll Surg. 2003;196:866–73.CrossRefPubMed
12.
go back to reference Hulscher JB, van Sandick JW, de Boer AG, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347:1662–9.CrossRefPubMed Hulscher JB, van Sandick JW, de Boer AG, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347:1662–9.CrossRefPubMed
13.
go back to reference Kelsen DP, Ginsberg R, Pajak TF, et al. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med. 1998;339:1979–84.CrossRefPubMed Kelsen DP, Ginsberg R, Pajak TF, et al. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med. 1998;339:1979–84.CrossRefPubMed
14.
go back to reference Law SY, Fok M, Wong J. Pattern of recurrence after esophageal resection for cancer: clinical implications. Br J Surg. 1996;83:107–11.CrossRefPubMed Law SY, Fok M, Wong J. Pattern of recurrence after esophageal resection for cancer: clinical implications. Br J Surg. 1996;83:107–11.CrossRefPubMed
15.
go back to reference Stahl M, Stuschke M, Lehmann N, et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23:2310–7.CrossRefPubMed Stahl M, Stuschke M, Lehmann N, et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23:2310–7.CrossRefPubMed
16.
go back to reference Crabtree TD, Kosinski AS, Puri V, et al. Evaluation of the reliability of clinical staging of T2 N0 esophageal cancer: a review of the Society of Thoracic Surgeons database. Ann Thorac Surg. 2013;96:382–90.CrossRefPubMedPubMedCentral Crabtree TD, Kosinski AS, Puri V, et al. Evaluation of the reliability of clinical staging of T2 N0 esophageal cancer: a review of the Society of Thoracic Surgeons database. Ann Thorac Surg. 2013;96:382–90.CrossRefPubMedPubMedCentral
17.
go back to reference Oppedijk V, van der Gaast A, van Lanschot JJ, et al. Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J Clin Oncol. 2014;32:385–91.CrossRefPubMed Oppedijk V, van der Gaast A, van Lanschot JJ, et al. Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J Clin Oncol. 2014;32:385–91.CrossRefPubMed
18.
go back to reference van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.CrossRefPubMed van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.CrossRefPubMed
19.
go back to reference Swisher SG, Winter KA, Komaki R, et al. A phase II study of a paclitaxel-based chemoradiation regimen with selective surgical salvage for resectable locoregionally advanced esophageal cancer: initial reporting of RTOG 0246. Int J Radiat Oncol Biol Phys. 2012;82:1967–72.CrossRefPubMed Swisher SG, Winter KA, Komaki R, et al. A phase II study of a paclitaxel-based chemoradiation regimen with selective surgical salvage for resectable locoregionally advanced esophageal cancer: initial reporting of RTOG 0246. Int J Radiat Oncol Biol Phys. 2012;82:1967–72.CrossRefPubMed
20.
go back to reference Ajani JA, Winter K, Komaki R, et al. Phase II randomized trial of two nonoperative regimens of induction chemotherapy followed by chemoradiation in patients with localized carcinoma of the esophagus: RTOG 0113. J Clin Oncol. 2008;26:4551–6.CrossRefPubMedPubMedCentral Ajani JA, Winter K, Komaki R, et al. Phase II randomized trial of two nonoperative regimens of induction chemotherapy followed by chemoradiation in patients with localized carcinoma of the esophagus: RTOG 0113. J Clin Oncol. 2008;26:4551–6.CrossRefPubMedPubMedCentral
21.
go back to reference Edge SB, et al. American Joint Committee on Cancer staging manual. 6th ed. Newyork: Springer; 2002. Edge SB, et al. American Joint Committee on Cancer staging manual. 6th ed. Newyork: Springer; 2002.
22.
go back to reference Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85–01). Radiation Therapy Oncology Group. JAMA. 1999;281:1623–7.CrossRefPubMed Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85–01). Radiation Therapy Oncology Group. JAMA. 1999;281:1623–7.CrossRefPubMed
23.
go back to reference Minsky BD, Neuberg D, Kelsen DP, et al. Neoadjuvant chemotherapy plus concurrent chemotherapy and high-dose radiation for squamous cell carcinoma of the esophagus: a preliminary analysis of the phase II intergroup trial 0122. J Clin Oncol. 1996;14:149–55.PubMed Minsky BD, Neuberg D, Kelsen DP, et al. Neoadjuvant chemotherapy plus concurrent chemotherapy and high-dose radiation for squamous cell carcinoma of the esophagus: a preliminary analysis of the phase II intergroup trial 0122. J Clin Oncol. 1996;14:149–55.PubMed
24.
go back to reference Zhong X, Yu J, Zhang B, et al. Using 18 F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys. 2009;73:136–41.CrossRefPubMed Zhong X, Yu J, Zhang B, et al. Using 18 F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys. 2009;73:136–41.CrossRefPubMed
25.
go back to reference Mamede M, El Fakhri G, Abreu-e-Lima P, et al. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann Nucl Med. 2007;21:553–62.CrossRefPubMed Mamede M, El Fakhri G, Abreu-e-Lima P, et al. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann Nucl Med. 2007;21:553–62.CrossRefPubMed
26.
go back to reference Muijs CT, Beukema JC, Pruim J, et al. A systematic review on the role of FDG-PET/CT in tumor delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol. 2010;97:165–71.CrossRefPubMed Muijs CT, Beukema JC, Pruim J, et al. A systematic review on the role of FDG-PET/CT in tumor delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol. 2010;97:165–71.CrossRefPubMed
27.
go back to reference Swisher SG, Erasmus J, Maish M, et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101:1776–85.CrossRefPubMed Swisher SG, Erasmus J, Maish M, et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101:1776–85.CrossRefPubMed
28.
go back to reference Muijs C, Smit J, Karrenbeld A, et al. Residual tumor after neoadjuvant chemoradiation outside the radiation therapy target volume: a new prognostic factor for survival in esophageal cancer. Int J Radiat Oncol Biol Phys. 2014;88:845–52.CrossRefPubMed Muijs C, Smit J, Karrenbeld A, et al. Residual tumor after neoadjuvant chemoradiation outside the radiation therapy target volume: a new prognostic factor for survival in esophageal cancer. Int J Radiat Oncol Biol Phys. 2014;88:845–52.CrossRefPubMed
29.
go back to reference Sjoquist KM, Burmeister BH, Smithers BM, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011;7:681–92.CrossRef Sjoquist KM, Burmeister BH, Smithers BM, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011;7:681–92.CrossRef
30.
go back to reference Jin HL, Zhu H, Ling TS, et al. Neoadjuvant chemoradiotherapy for resectable esophageal carcinoma: a meta-analysis. World J Gastroenterol. 2009;15:5983–91.CrossRefPubMedPubMedCentral Jin HL, Zhu H, Ling TS, et al. Neoadjuvant chemoradiotherapy for resectable esophageal carcinoma: a meta-analysis. World J Gastroenterol. 2009;15:5983–91.CrossRefPubMedPubMedCentral
31.
go back to reference Pottgen C, Stuschke M. Radiotherapy versus surgery within multlmodality protocols for esophageal cancer: a metaanalysis of the randomized trials. Cancer Treat Rev. 2012;38:599–604.CrossRefPubMed Pottgen C, Stuschke M. Radiotherapy versus surgery within multlmodality protocols for esophageal cancer: a metaanalysis of the randomized trials. Cancer Treat Rev. 2012;38:599–604.CrossRefPubMed
32.
go back to reference Welsh J, Settle SH, Amini A, et al. Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer. 2012;118:2632–40.CrossRefPubMed Welsh J, Settle SH, Amini A, et al. Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer. 2012;118:2632–40.CrossRefPubMed
33.
go back to reference Amini A, Ajani J, Komaki R, et al. Factors associated with local-regional failure after definitive chemoradiation for locally advanced esophageal cancer. Ann Surg Oncol. 2014;1:306–14.CrossRef Amini A, Ajani J, Komaki R, et al. Factors associated with local-regional failure after definitive chemoradiation for locally advanced esophageal cancer. Ann Surg Oncol. 2014;1:306–14.CrossRef
34.
go back to reference Thoen H, Ceelen W, Boterberg T, et al. Tumor recurrence and in-field control after multimodality treatment of locally advanced esophageal cancer. Radiother Oncol. 2015;115:16–21.CrossRefPubMed Thoen H, Ceelen W, Boterberg T, et al. Tumor recurrence and in-field control after multimodality treatment of locally advanced esophageal cancer. Radiother Oncol. 2015;115:16–21.CrossRefPubMed
35.
go back to reference Neishaboori N, Wadhwa R, Nogueras-Gonzales GM, et al. Distribution of resistant esophageal adenocarcinoma in the resected specimens of clinical stage III patients after chemoradiation: its clinical implications. Oncology. 2015;89:65–9.CrossRefPubMedPubMedCentral Neishaboori N, Wadhwa R, Nogueras-Gonzales GM, et al. Distribution of resistant esophageal adenocarcinoma in the resected specimens of clinical stage III patients after chemoradiation: its clinical implications. Oncology. 2015;89:65–9.CrossRefPubMedPubMedCentral
36.
go back to reference Gemici C. Residual tumor after neoadjuvant chemoradiation outside the radiation therapy target volume: a new prognostic factor for survival in esophageal cancer. In regard to Muijs et al. Int J Radiat Oncol Biol Phys. 2014;90:715–8.CrossRefPubMed Gemici C. Residual tumor after neoadjuvant chemoradiation outside the radiation therapy target volume: a new prognostic factor for survival in esophageal cancer. In regard to Muijs et al. Int J Radiat Oncol Biol Phys. 2014;90:715–8.CrossRefPubMed
37.
go back to reference Bedenne L, Michel P, Bouche O, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol. 2007;25:1160–8.CrossRefPubMed Bedenne L, Michel P, Bouche O, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol. 2007;25:1160–8.CrossRefPubMed
38.
go back to reference Button MR, Morgan CA, Croydan ES, et al. Study to determine adequate margins in radiotherapy planning for esophageal carcinoma by detailing patterns of recurrence after definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:818–23.CrossRefPubMed Button MR, Morgan CA, Croydan ES, et al. Study to determine adequate margins in radiotherapy planning for esophageal carcinoma by detailing patterns of recurrence after definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:818–23.CrossRefPubMed
40.
go back to reference Allum WH, Stenning SP, Bancewicz J, et al. Long term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J Clin Oncol. 2009;27:5062–7.CrossRefPubMed Allum WH, Stenning SP, Bancewicz J, et al. Long term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J Clin Oncol. 2009;27:5062–7.CrossRefPubMed
41.
go back to reference Zhang SS, Yang H, Xie X, et al. Adjuvant chemotherapy versus surgery alone for esophageal squamous cell carcinoma: a meta-analysis of randomized controlled trials and nonrandomized studies. Dis Esophagus. 2014;27:574–84.CrossRefPubMed Zhang SS, Yang H, Xie X, et al. Adjuvant chemotherapy versus surgery alone for esophageal squamous cell carcinoma: a meta-analysis of randomized controlled trials and nonrandomized studies. Dis Esophagus. 2014;27:574–84.CrossRefPubMed
42.
go back to reference Gemici C. The addition of induction chemotherapy to preoperative, concurrent chemoradiotherapy improves tumor response in patients with esophageal adenocarcinoma. Cancer. 2007;19:2857. Gemici C. The addition of induction chemotherapy to preoperative, concurrent chemoradiotherapy improves tumor response in patients with esophageal adenocarcinoma. Cancer. 2007;19:2857.
43.
go back to reference Welsh J, Palmer MB, Ajani JA, et al. Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys. 2012;82:468–74.44.CrossRefPubMed Welsh J, Palmer MB, Ajani JA, et al. Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys. 2012;82:468–74.44.CrossRefPubMed
44.
go back to reference Warren S, Partridge M, Carrington R, et al. Radiobiological determination of dose escalation and normal tissue toxicity in definitive chemoradiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2014;90:423–9.CrossRefPubMedPubMedCentral Warren S, Partridge M, Carrington R, et al. Radiobiological determination of dose escalation and normal tissue toxicity in definitive chemoradiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2014;90:423–9.CrossRefPubMedPubMedCentral
45.
go back to reference Zhang Z, Liao Z, Jin J, et al. Dose–response relationship in locoregional control for patients with stage II-III esophageal cancer treated with concurrent chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61:656–64.CrossRefPubMed Zhang Z, Liao Z, Jin J, et al. Dose–response relationship in locoregional control for patients with stage II-III esophageal cancer treated with concurrent chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61:656–64.CrossRefPubMed
46.
go back to reference Geh JI, Bond SJ, Bentzen SM, et al. Systematic overview of preoperative (neoadjuvant) chemoradiotherapy trials in esophageal cancer: evidence of a radiation and chemotherapy dose response. Radiother Oncol. 2006;78:236–44.CrossRefPubMed Geh JI, Bond SJ, Bentzen SM, et al. Systematic overview of preoperative (neoadjuvant) chemoradiotherapy trials in esophageal cancer: evidence of a radiation and chemotherapy dose response. Radiother Oncol. 2006;78:236–44.CrossRefPubMed
Metadata
Title
Radiation field size and dose determine oncologic outcome in esophageal cancer
Authors
Cengiz Gemici
Gokhan Yaprak
Hasan Fevzi Batirel
Mahmut Ilhan
Alpaslan Mayadagli
Publication date
01-12-2016
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2016
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-016-1024-0

Other articles of this Issue 1/2016

World Journal of Surgical Oncology 1/2016 Go to the issue