Skip to main content
Top
Published in: Clinical and Translational Allergy 1/2019

Open Access 01-12-2019 | Proton Pump Inhibitors | Research

Cofactors of wheat-dependent exercise-induced anaphylaxis do not increase highly individual gliadin absorption in healthy volunteers

Authors: Katharina Anne Scherf, Ann-Christin Lindenau, Luzia Valentini, Maria Carmen Collado, Izaskun García-Mantrana, Morten Christensen, Dirk Tomsitz, Claudia Kugler, Tilo Biedermann, Knut Brockow

Published in: Clinical and Translational Allergy | Issue 1/2019

Login to get access

Abstract

Background

In wheat-dependent exercise-induced anaphylaxis (WDEIA), cofactors such as exercise, acetylsalicylic acid (ASA), alcohol or unfavorable climatic conditions are required to elicit a reaction to wheat products. The mechanism of action of these cofactors is unknown, but an increase of gliadin absorption has been speculated. Our objectives were to study gliadin absorption with and without cofactors and to correlate plasma gliadin levels with factors influencing protein absorption in healthy volunteers.

Methods

Twelve healthy probands (six males, six females; aged 20–56 years) ingested 32 g of gluten without any cofactor or in combination with cofactors aerobic and anaerobic exercise, ASA, alcohol and pantoprazole. Gliadin serum levels were measured up to 120 min afterwards and the intestinal barrier function protein zonulin in stool was collected before and after the procedure; both were measured by ELISA. Stool microbiota profile was obtained by 16S gene sequencing.

Results

Within 15 min after gluten intake, gliadin concentrations in blood serum increased from baseline in all subjects reaching highly variable peak levels after 15–90 min. Addition of cofactors did not lead to substantially higher gliadin levels, although variability of levels was higher with differences between individuals (p < 0.001) and increased levels at later time points. Zonulin levels in stool were associated neither with addition of cofactors nor with peak gliadin concentrations. There were no differences in gut microbiota between the different interventions, although the composition of microbiota (p < 0.001) and the redundancy discriminant analysis (p < 0.007) differed in probands with low versus high stool zonulin levels.

Conclusion

The adsorption of gliadin in the gut in healthy volunteers is less dependent on cofactors than has been hypothesized. Patients with WDEIA may have a predisposition needed for the additional effect of cofactors, e.g., hyperresponsive or damaged intestinal epithelium. Alternatively, other mechanisms, such as cofactor-induced blood flow redistribution, increased activity of tissue transglutaminase, or increases in plasma osmolality and acidosis inducing basophil and mast cell histamine release may play the major role in WDEIA.
Literature
1.
go back to reference Quirce S, Boyano-Martínez T, Díaz-Perales A. Clinical presentation, allergens, and management of wheat allergy. Expert Rev Clin Immunol. 2016;12:563–72.CrossRef Quirce S, Boyano-Martínez T, Díaz-Perales A. Clinical presentation, allergens, and management of wheat allergy. Expert Rev Clin Immunol. 2016;12:563–72.CrossRef
2.
go back to reference Christensen MJ, Eller E, Mortz CG, Bindslev-Jensen C. Patterns of suspected wheat-related allergy: a retrospective single-centre case note review in 156 patients. Clin Transl Allergy. 2014;4:30.CrossRef Christensen MJ, Eller E, Mortz CG, Bindslev-Jensen C. Patterns of suspected wheat-related allergy: a retrospective single-centre case note review in 156 patients. Clin Transl Allergy. 2014;4:30.CrossRef
3.
go back to reference Palosuo K, Alenius H, Varjonen E, Koivuluhta M, Mikkola J, Keskinen H, et al. A novel wheat gliadin as a cause of exercise-induced anaphylaxis. J Allergy Clin Immunol. 1999;103:912–7.CrossRef Palosuo K, Alenius H, Varjonen E, Koivuluhta M, Mikkola J, Keskinen H, et al. A novel wheat gliadin as a cause of exercise-induced anaphylaxis. J Allergy Clin Immunol. 1999;103:912–7.CrossRef
4.
go back to reference Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H. Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2016;46:10–20.CrossRef Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H. Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2016;46:10–20.CrossRef
5.
go back to reference Kennard L, Thomas I, Rukowski K, Azzu V, Yong PFK, Kasternow B, et al. A multicenter evaluation of diagnosis and management of omega-5 gliadin allergy (also known as wheat-dependent exercise-induced anaphylaxis) in 132 adults. J Allergy Clin Immunol. 2018;6:1892–7.CrossRef Kennard L, Thomas I, Rukowski K, Azzu V, Yong PFK, Kasternow B, et al. A multicenter evaluation of diagnosis and management of omega-5 gliadin allergy (also known as wheat-dependent exercise-induced anaphylaxis) in 132 adults. J Allergy Clin Immunol. 2018;6:1892–7.CrossRef
6.
go back to reference Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. 2013;68:1085–92.CrossRef Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. 2013;68:1085–92.CrossRef
7.
go back to reference Romano A, Scala E, Rumi G, Gaeta F, Caruso C, Alonzi C, et al. Lipid transfer proteins: the most frequent sensitizer in Italian subjects with food-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2012;42:1643–53.CrossRef Romano A, Scala E, Rumi G, Gaeta F, Caruso C, Alonzi C, et al. Lipid transfer proteins: the most frequent sensitizer in Italian subjects with food-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2012;42:1643–53.CrossRef
8.
go back to reference Lehto M, Palosuo K, Varjonen E, Majuri ML, Andersson U, Reunala T, Alenius H. Humoral and cellular responses to gliadin in wheat-dependent, exercise-induced anaphylaxis. Clin Exp Allergy. 2003;33:90–5.CrossRef Lehto M, Palosuo K, Varjonen E, Majuri ML, Andersson U, Reunala T, Alenius H. Humoral and cellular responses to gliadin in wheat-dependent, exercise-induced anaphylaxis. Clin Exp Allergy. 2003;33:90–5.CrossRef
9.
go back to reference Brockow K, Kneissl D, Valentini L, Zelger O, Grosber M, Kugler C, et al. Using a gluten oral food challenge protocol to improve diagnosis of wheat-dependent exercise-induced anaphylaxis. J Allergy Clin Immunol. 2015;135(977–984):e4. Brockow K, Kneissl D, Valentini L, Zelger O, Grosber M, Kugler C, et al. Using a gluten oral food challenge protocol to improve diagnosis of wheat-dependent exercise-induced anaphylaxis. J Allergy Clin Immunol. 2015;135(977–984):e4.
10.
go back to reference Barg W, Wolanczyk-Medrala A, Obojski A, Wytrychowski K, Panaszek B, Medrala W. Food-dependent exercise-induced anaphylaxis: possible impact of increased basophil histamine releasability in hyperosmolar conditions. J Investig Allergol Clin Immunol. 2008;18:312–5.PubMed Barg W, Wolanczyk-Medrala A, Obojski A, Wytrychowski K, Panaszek B, Medrala W. Food-dependent exercise-induced anaphylaxis: possible impact of increased basophil histamine releasability in hyperosmolar conditions. J Investig Allergol Clin Immunol. 2008;18:312–5.PubMed
11.
go back to reference Untersmayr E, Jensen-Jarolim E. The effect of gastric digestion on food allergy. Curr Opin Allergy Clin Immunol. 2006;6:214–9.CrossRef Untersmayr E, Jensen-Jarolim E. The effect of gastric digestion on food allergy. Curr Opin Allergy Clin Immunol. 2006;6:214–9.CrossRef
12.
go back to reference Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol. 2008;121:1301–8.CrossRef Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol. 2008;121:1301–8.CrossRef
13.
go back to reference Pals KL, Chang RT, Ryan AJ, Gisolfi CV. Effect of running intensity on intestinal permeability. J Appl Physiol. 1997;82:571–6.CrossRef Pals KL, Chang RT, Ryan AJ, Gisolfi CV. Effect of running intensity on intestinal permeability. J Appl Physiol. 1997;82:571–6.CrossRef
14.
go back to reference Karhu E, Forsgård RA, Alanko L, Alfthan H, Pussinen P, Hämäläinen E, Korpela R. Exercise and gastrointestinal symptoms: running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. Eur J Appl Physiol. 2017;117:2519–26.CrossRef Karhu E, Forsgård RA, Alanko L, Alfthan H, Pussinen P, Hämäläinen E, Korpela R. Exercise and gastrointestinal symptoms: running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. Eur J Appl Physiol. 2017;117:2519–26.CrossRef
15.
go back to reference Yano H, Kato Y, Matsuda T. Acute exercise induces gastrointestinal leakage of allergen in lysozyme-sensitized mice. Eur J Appl Physiol. 2002;87:358–64.CrossRef Yano H, Kato Y, Matsuda T. Acute exercise induces gastrointestinal leakage of allergen in lysozyme-sensitized mice. Eur J Appl Physiol. 2002;87:358–64.CrossRef
16.
go back to reference Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, et al. Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2005;35:461–6.CrossRef Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, et al. Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2005;35:461–6.CrossRef
17.
go back to reference Sigthorsson G, Tibble J, Hayllar J, Menzies I, Macpherson A, Moots R, et al. Intestinal permeability and inflammation in patients on NSAIDs. Gut. 1998;43:506–11.CrossRef Sigthorsson G, Tibble J, Hayllar J, Menzies I, Macpherson A, Moots R, et al. Intestinal permeability and inflammation in patients on NSAIDs. Gut. 1998;43:506–11.CrossRef
18.
go back to reference Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154:500–14.CrossRef Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154:500–14.CrossRef
19.
go back to reference Suzuki Y, Ra C. Analysis of the mechanism for the development of allergic skin inflammation and the application for its treatment: aspirin modulation of IgE-dependent mast cell activation: role of aspirin-induced exacerbation of immediate allergy. J Pharmacol Sci. 2009;110:237–44.CrossRef Suzuki Y, Ra C. Analysis of the mechanism for the development of allergic skin inflammation and the application for its treatment: aspirin modulation of IgE-dependent mast cell activation: role of aspirin-induced exacerbation of immediate allergy. J Pharmacol Sci. 2009;110:237–44.CrossRef
20.
go back to reference Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, Fioramonti J. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol. 2006;168:1148–54.CrossRef Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, Fioramonti J. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol. 2006;168:1148–54.CrossRef
21.
go back to reference Ventura MT, Polimeno L, Amoruso AC, Gatti F, Annoscia E, Marinaro M, et al. Intestinal permeability in patients with adverse reactions to food. Dig Liver Dis. 2006;38:732–6.CrossRef Ventura MT, Polimeno L, Amoruso AC, Gatti F, Annoscia E, Marinaro M, et al. Intestinal permeability in patients with adverse reactions to food. Dig Liver Dis. 2006;38:732–6.CrossRef
22.
go back to reference Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70:631–59.CrossRef Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70:631–59.CrossRef
23.
go back to reference Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:e193. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:e193.
24.
go back to reference Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73:145–52.CrossRef Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73:145–52.CrossRef
25.
go back to reference Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80:2546–54.CrossRef Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80:2546–54.CrossRef
26.
go back to reference Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol. 2016;173:10–8.CrossRef Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol. 2016;173:10–8.CrossRef
27.
go back to reference Blázquez AB, Berin MC. Microbiome and food allergy. Transl Res. 2017;179:199–203.CrossRef Blázquez AB, Berin MC. Microbiome and food allergy. Transl Res. 2017;179:199–203.CrossRef
28.
go back to reference Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014;111:13145–50.CrossRef Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014;111:13145–50.CrossRef
29.
go back to reference Van Eckert R, Berghofer E, Ciclitira PJ, Chirdo F, Denery-Papini S, Ellis H-J, et al. Towards a new gliadin reference material—isolation and characterisation. J Cereal Sci. 2006;43:331–41.CrossRef Van Eckert R, Berghofer E, Ciclitira PJ, Chirdo F, Denery-Papini S, Ellis H-J, et al. Towards a new gliadin reference material—isolation and characterisation. J Cereal Sci. 2006;43:331–41.CrossRef
30.
go back to reference Schalk K, Lexhaller B, Koehler P, Scherf KA. Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS ONE. 2017;12:e0172819.CrossRef Schalk K, Lexhaller B, Koehler P, Scherf KA. Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS ONE. 2017;12:e0172819.CrossRef
31.
go back to reference Matsuo H, Dahlström J, Tanaka A, Kohno K, Takahashi H, Furumura M, Morita E. Sensitivity and specificity of recombinant omega-5 gliadin-specific IgE measurement for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergy. 2008;63:233–6.CrossRef Matsuo H, Dahlström J, Tanaka A, Kohno K, Takahashi H, Furumura M, Morita E. Sensitivity and specificity of recombinant omega-5 gliadin-specific IgE measurement for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergy. 2008;63:233–6.CrossRef
32.
go back to reference Kohno K, Matsuo H, Takahashi H, Niihara H, Chinuki Y, Kaneko S, et al. Serum gliadin monitoring extracts patients with false negative results in challenge tests for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergo Int. 2013;62:229–38.CrossRef Kohno K, Matsuo H, Takahashi H, Niihara H, Chinuki Y, Kaneko S, et al. Serum gliadin monitoring extracts patients with false negative results in challenge tests for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergo Int. 2013;62:229–38.CrossRef
33.
go back to reference Scherf KA, Poms RE. Recent advances in analytical methods for tracing gluten. J Cereal Sci. 2016;67:112–22.CrossRef Scherf KA, Poms RE. Recent advances in analytical methods for tracing gluten. J Cereal Sci. 2016;67:112–22.CrossRef
34.
go back to reference Boix-Amoros A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016;7:492.CrossRef Boix-Amoros A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016;7:492.CrossRef
35.
go back to reference Christensen MJ, Eller E, Mortz CG, Brockow K, Bindslev-Jensen C. Exercise lowers threshold and increases severity, but wheat-dependent, exercise-induced anaphylaxis can be elicited at rest. J Allergy Clin Immunol Pract. 2018;6:514–20.CrossRef Christensen MJ, Eller E, Mortz CG, Brockow K, Bindslev-Jensen C. Exercise lowers threshold and increases severity, but wheat-dependent, exercise-induced anaphylaxis can be elicited at rest. J Allergy Clin Immunol Pract. 2018;6:514–20.CrossRef
36.
go back to reference Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol. 2012;10:1096–100.CrossRef Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol. 2012;10:1096–100.CrossRef
37.
go back to reference Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36.CrossRef Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36.CrossRef
38.
go back to reference Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, et al. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy. 2015;70:1212–21.CrossRef Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, et al. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy. 2015;70:1212–21.CrossRef
39.
go back to reference Borres MP, Maruyama N, Sato S, Ebisawa M. Recent advances in component resolved diagnosis in food allergy. Allergol Int. 2016;65:378–87.CrossRef Borres MP, Maruyama N, Sato S, Ebisawa M. Recent advances in component resolved diagnosis in food allergy. Allergol Int. 2016;65:378–87.CrossRef
40.
go back to reference Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.CrossRef Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.CrossRef
41.
go back to reference Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139:1619–25.CrossRef Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139:1619–25.CrossRef
42.
go back to reference Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep. 2017;7:11450.CrossRef Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep. 2017;7:11450.CrossRef
43.
go back to reference Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:316.CrossRef Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:316.CrossRef
44.
go back to reference Sultana R, McBain AJ, O’Neill CA. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl Environ Microbiol. 2013;8(79):4887–94.CrossRef Sultana R, McBain AJ, O’Neill CA. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl Environ Microbiol. 2013;8(79):4887–94.CrossRef
45.
go back to reference Human Microbiome Project Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRef Human Microbiome Project Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRef
46.
go back to reference Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes. 2017;41:1099–105.CrossRef Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes. 2017;41:1099–105.CrossRef
Metadata
Title
Cofactors of wheat-dependent exercise-induced anaphylaxis do not increase highly individual gliadin absorption in healthy volunteers
Authors
Katharina Anne Scherf
Ann-Christin Lindenau
Luzia Valentini
Maria Carmen Collado
Izaskun García-Mantrana
Morten Christensen
Dirk Tomsitz
Claudia Kugler
Tilo Biedermann
Knut Brockow
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Clinical and Translational Allergy / Issue 1/2019
Electronic ISSN: 2045-7022
DOI
https://doi.org/10.1186/s13601-019-0260-0

Other articles of this Issue 1/2019

Clinical and Translational Allergy 1/2019 Go to the issue