Skip to main content
Top
Published in: Tumor Biology 10/2016

01-10-2016 | Original Article

Proteomic analysis of differentially expressed proteins in vitreous humor of patients with retinoblastoma using iTRAQ-coupled ESI-MS/MS approach

Authors: Jasmine Naru, Ritu Aggarwal, Usha Singh, Ashok Kumar Mohanty, Deepak Bansal, Navdeep Mangat, Nandita Kakkar, Navneet Agnihotri

Published in: Tumor Biology | Issue 10/2016

Login to get access

Abstract

There is close proximity of vitreous humor with the tumor bulk in eyes with retinoblastoma. This renders vitreous humor a promising source to evaluate disease-specific protein targets in retinoblastoma. We studied the differential proteome of vitreous fluid in retinoblastoma tumors (n = 4) as compared to controls (n = 4). The vitreous humor was depleted off the high abundant fraction using MARS-6 affinity column. Subsequently, the tryptic peptides were derivatised with iTRAQ labels. The labelled peptides were pooled and subjected to fractionation using bRPLC. This was followed by protein identification and quantification using electrospray ionisation mass spectrometry (ESI-MS/MS) approach. The identified proteins were subjected to bioinformatics analysis utilizing PANTHER 7.0 and IPA software. Four hundred and thirty-one non-redundant (362 upregulated and 69 downregulated) proteins (≥2 unique peptides, ± 1.5 folds, p < 0.05) were identified. The majority of the proteins were cytoplasmic (40 %), majorly involved in catalytic (32.7 %) and binding activities (26.3 %). Highly deregulated proteins included MMP2, TNC, CD44, SUZ12 and CRABP1. The protein expression of GFAP, CRABP1, MMP2 and TNC was validated by western blotting. Pathway and network analyses revealed p38MAPK and Akt signalling to be the most significantly regulated pathways in retinoblastoma. This is the first report of differential vitreous proteome of retinoblastoma and highlights novel protein targets, such as MMP2, TNC and CRABP1. Further investigations into unravelling the biological role of the proteins and their prospects of being utilised as potential candidates in therapeutics are warranted.
Appendix
Available only for authorised users
Literature
2.
go back to reference Gombos DS, Hungerford J, Abramson DH, Kingston J, Chantada G, Dunkel IJ. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor? Ophthalmology. 2007;114:1378–83.CrossRefPubMed Gombos DS, Hungerford J, Abramson DH, Kingston J, Chantada G, Dunkel IJ. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor? Ophthalmology. 2007;114:1378–83.CrossRefPubMed
3.
go back to reference Brookhouser PE. Sensorineural hearing loss in children. Pediatr Clin N Am. 1996;43:1195–216.CrossRef Brookhouser PE. Sensorineural hearing loss in children. Pediatr Clin N Am. 1996;43:1195–216.CrossRef
4.
go back to reference Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.CrossRefPubMed Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.CrossRefPubMed
5.
go back to reference Len AC, Powner MB, Zhu L, Hageman GS, Song X, Fruttiger M. Pilot application of itraq to the retinal disease macular telangiectasia. Proteome Res. 2012;11:537–53.CrossRef Len AC, Powner MB, Zhu L, Hageman GS, Song X, Fruttiger M. Pilot application of itraq to the retinal disease macular telangiectasia. Proteome Res. 2012;11:537–53.CrossRef
6.
go back to reference Wang H, Fenga L, Hu J, Xie C, Wang F. Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp Eye Res. 2013;108:110e119.CrossRef Wang H, Fenga L, Hu J, Xie C, Wang F. Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp Eye Res. 2013;108:110e119.CrossRef
7.
go back to reference Pollreisz A, Funk M, Breitwieser FP, Parapatics K, Sacu S, Georgopoulos M, et al. Quantitative proteomics of aqueous and vitreous fluid from patients with idiopathic epiretinal membranes. Exp Eye Res. 2013;108:48e58.CrossRef Pollreisz A, Funk M, Breitwieser FP, Parapatics K, Sacu S, Georgopoulos M, et al. Quantitative proteomics of aqueous and vitreous fluid from patients with idiopathic epiretinal membranes. Exp Eye Res. 2013;108:48e58.CrossRef
8.
go back to reference Aretz S, Krohne TU, Kammerer K, Warnken U, Wagenblatt AH, Bergmann B, et al. In-depth mass spectrometric mapping of the human vitreous proteome. Proteome Sci. 2013;11:22.CrossRefPubMedPubMedCentral Aretz S, Krohne TU, Kammerer K, Warnken U, Wagenblatt AH, Bergmann B, et al. In-depth mass spectrometric mapping of the human vitreous proteome. Proteome Sci. 2013;11:22.CrossRefPubMedPubMedCentral
9.
go back to reference Koss MJ, Hoffmann J, Nguyen N, Pfister M, Mischak H, Mullen W, et al. Proteomics of vitreous humor of patients with exudative age-related macular degeneration. PLoS One. 2014;9:e96895.CrossRefPubMedPubMedCentral Koss MJ, Hoffmann J, Nguyen N, Pfister M, Mischak H, Mullen W, et al. Proteomics of vitreous humor of patients with exudative age-related macular degeneration. PLoS One. 2014;9:e96895.CrossRefPubMedPubMedCentral
10.
11.
go back to reference Millo T, Jaiswa AK, Behera C. Collection, preservation and forwarding of biolgical samples for toxicological analysis in medicolegal autopsy cases: a review. J Indian Acad Forensic Med. 2008;30:96–100. Millo T, Jaiswa AK, Behera C. Collection, preservation and forwarding of biolgical samples for toxicological analysis in medicolegal autopsy cases: a review. J Indian Acad Forensic Med. 2008;30:96–100.
12.
go back to reference Angi M, Kalirai H, Coupland SE, Damato BE, Semeraro F, Romano MR. Proteomic analyses of the vitreous humour. Mediat Inflamm. 2012;2012:148039.CrossRef Angi M, Kalirai H, Coupland SE, Damato BE, Semeraro F, Romano MR. Proteomic analyses of the vitreous humour. Mediat Inflamm. 2012;2012:148039.CrossRef
13.
go back to reference Ulrich JN, Spannagl M, Kampik A, Gandorfer A. Components of the fibrinolytic system in the vitreous body in patients with vitreoretinal disorders. Clin Exp Ophthalmol. 2008;36:431–6.PubMed Ulrich JN, Spannagl M, Kampik A, Gandorfer A. Components of the fibrinolytic system in the vitreous body in patients with vitreoretinal disorders. Clin Exp Ophthalmol. 2008;36:431–6.PubMed
14.
go back to reference Liu RR, Li MD, Li T, Tan Y, Zhang M, Chen JC. Matrix metalloproteinase 2 (MMP2) protein expression and laryngeal cancer prognosis: a meta analysis. Int J Clin Exp Med. 2015;8:2261–6.PubMedPubMedCentral Liu RR, Li MD, Li T, Tan Y, Zhang M, Chen JC. Matrix metalloproteinase 2 (MMP2) protein expression and laryngeal cancer prognosis: a meta analysis. Int J Clin Exp Med. 2015;8:2261–6.PubMedPubMedCentral
15.
go back to reference Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, Konik E. Increased expression of matrix metalloproteinases (MMP)-2, MMP- 9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res. 2001;7:2396–404.PubMed Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, Konik E. Increased expression of matrix metalloproteinases (MMP)-2, MMP- 9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res. 2001;7:2396–404.PubMed
16.
go back to reference Nomura H, Fujimoto N, Seiki M, Mai M, Okada Y. Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase a) in human gastric carcinomas. Int J Cancer. 1996;69:9–16.CrossRefPubMed Nomura H, Fujimoto N, Seiki M, Mai M, Okada Y. Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase a) in human gastric carcinomas. Int J Cancer. 1996;69:9–16.CrossRefPubMed
17.
go back to reference Long H, Zhou B, Jiang FG. Expression of MMP-2 and MMP-9 in retinoblastoma and their significance. Int J Ophthalmol. 2011;4:489–91.PubMedPubMedCentral Long H, Zhou B, Jiang FG. Expression of MMP-2 and MMP-9 in retinoblastoma and their significance. Int J Ophthalmol. 2011;4:489–91.PubMedPubMedCentral
18.
go back to reference Kim JH, Kim JH, Cho CS, Jun HO, Kim DH, YS Y, et al. Differential roles of matrix metalloproteinase-9 and −2, depending on proliferation or differentiation of retinoblastoma cells. Invest Ophthalmol Vis Sci. 2010;51:1783–8.CrossRefPubMed Kim JH, Kim JH, Cho CS, Jun HO, Kim DH, YS Y, et al. Differential roles of matrix metalloproteinase-9 and −2, depending on proliferation or differentiation of retinoblastoma cells. Invest Ophthalmol Vis Sci. 2010;51:1783–8.CrossRefPubMed
19.
go back to reference Ehrismann RC, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200:488–99.CrossRef Ehrismann RC, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200:488–99.CrossRef
20.
go back to reference Orend G, Chiquet-Ehrismann R. Tenascin-C induced signalling in cancer. Cancer Lett. 2006;244:143–63.CrossRefPubMed Orend G, Chiquet-Ehrismann R. Tenascin-C induced signalling in cancer. Cancer Lett. 2006;244:143–63.CrossRefPubMed
21.
go back to reference Ruiz C, Huang W, Hegi ME, Lange K, Hamou MF, Fluri E, et al. Differential gene expression analysis reveals activation of growth promoting signaling pathways by tenascin-C. Cancer Res. 2004;64:7377–85.CrossRefPubMed Ruiz C, Huang W, Hegi ME, Lange K, Hamou MF, Fluri E, et al. Differential gene expression analysis reveals activation of growth promoting signaling pathways by tenascin-C. Cancer Res. 2004;64:7377–85.CrossRefPubMed
22.
go back to reference Alharth AS. Tenascin-C (TNC) promotes breast cancer cell invasion and proliferation: functional effects of tnc knockdown in highly invasive breast cancer cell lines. Am J Med Biol Res. 2015;3:55–61.CrossRef Alharth AS. Tenascin-C (TNC) promotes breast cancer cell invasion and proliferation: functional effects of tnc knockdown in highly invasive breast cancer cell lines. Am J Med Biol Res. 2015;3:55–61.CrossRef
23.
go back to reference Rodgers LS, Lalani S, Hardy KM, Xiang X, Broka D, Antin PB, et al. Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res. 2006;99:583–9.CrossRefPubMed Rodgers LS, Lalani S, Hardy KM, Xiang X, Broka D, Antin PB, et al. Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res. 2006;99:583–9.CrossRefPubMed
24.
go back to reference Balla MM, Vemuganti GK, Kannabiran C, Honavar SG, Murthy R. Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci. 2009;50:1506–14.CrossRefPubMed Balla MM, Vemuganti GK, Kannabiran C, Honavar SG, Murthy R. Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci. 2009;50:1506–14.CrossRefPubMed
25.
go back to reference Ma B, Lei X, Guan Y, Mou LS, Yuan YF, Yue H, et al. Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture from human retinoblastoma. Oncol Rep. 2011;26:135–43.PubMed Ma B, Lei X, Guan Y, Mou LS, Yuan YF, Yue H, et al. Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture from human retinoblastoma. Oncol Rep. 2011;26:135–43.PubMed
26.
go back to reference Li XP, Zhang XW, Zheng LZ, Guo WJ. Expression of CD44 in pancreatic cancer and its significance. Int J Clin Exp Pathol. 2015;8:6724–31.PubMedPubMedCentral Li XP, Zhang XW, Zheng LZ, Guo WJ. Expression of CD44 in pancreatic cancer and its significance. Int J Clin Exp Pathol. 2015;8:6724–31.PubMedPubMedCentral
27.
go back to reference Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol. 2012;41:211–8.PubMed Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol. 2012;41:211–8.PubMed
28.
go back to reference Zhou M, Sun J, Liu Y, Ma J. Suppressor of Zeste 12 homolog RNA interference inhibits retinoblastoma cell invasion. Oncol Lett. 2014;8:1933–6.PubMedPubMedCentral Zhou M, Sun J, Liu Y, Ma J. Suppressor of Zeste 12 homolog RNA interference inhibits retinoblastoma cell invasion. Oncol Lett. 2014;8:1933–6.PubMedPubMedCentral
29.
go back to reference Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, et al. SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK. Mol Cancer Res. 2012;10:1462–72.CrossRefPubMedPubMedCentral Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, et al. SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK. Mol Cancer Res. 2012;10:1462–72.CrossRefPubMedPubMedCentral
30.
go back to reference Xia R, Jin FY, Lu K, Wan L, Xie M, TP X, et al. SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin. Tumour Biol. 2015;36:5341–51.CrossRefPubMed Xia R, Jin FY, Lu K, Wan L, Xie M, TP X, et al. SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin. Tumour Biol. 2015;36:5341–51.CrossRefPubMed
31.
go back to reference Recio JA, Merlino G. Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene. 2002;21:1000–8.CrossRefPubMed Recio JA, Merlino G. Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene. 2002;21:1000–8.CrossRefPubMed
32.
go back to reference Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000;60:3689–95.PubMed Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000;60:3689–95.PubMed
33.
go back to reference Delston RB, Matatall KA, Sun Y, Onken MD, Harbour JW. p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. Oncogene. 2011;30:588–99.CrossRefPubMed Delston RB, Matatall KA, Sun Y, Onken MD, Harbour JW. p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. Oncogene. 2011;30:588–99.CrossRefPubMed
34.
go back to reference Bachelor MA, Bowden GT. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004;14:131–8.CrossRefPubMed Bachelor MA, Bowden GT. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004;14:131–8.CrossRefPubMed
35.
go back to reference Timoshenko AV, Chakraborty C, Wagner GF, Lala PK. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer. 2006;94:1154–63.CrossRefPubMedPubMedCentral Timoshenko AV, Chakraborty C, Wagner GF, Lala PK. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer. 2006;94:1154–63.CrossRefPubMedPubMedCentral
36.
go back to reference Xu K, Shu HK. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res. 2007;67:6121–9.CrossRefPubMed Xu K, Shu HK. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res. 2007;67:6121–9.CrossRefPubMed
37.
go back to reference Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, et al. Stabilized catenin functions through TCF/LEF proteins and the notch/RBP-J complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol. 2008;28:7427–41.CrossRefPubMedPubMedCentral Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, et al. Stabilized catenin functions through TCF/LEF proteins and the notch/RBP-J complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol. 2008;28:7427–41.CrossRefPubMedPubMedCentral
38.
go back to reference Stivarou T, Patsavoudi E. Extracellular molecules involved in cancer cell invasion. Cancer. 2015;7:238–65.CrossRef Stivarou T, Patsavoudi E. Extracellular molecules involved in cancer cell invasion. Cancer. 2015;7:238–65.CrossRef
39.
go back to reference Xiao W, Chen X, He M. Inhibition of the jagged/notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt, src, p38MAPK and wnt/β-catenin signaling pathways. Mol Med Rep. 2014;10:453–8.PubMed Xiao W, Chen X, He M. Inhibition of the jagged/notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt, src, p38MAPK and wnt/β-catenin signaling pathways. Mol Med Rep. 2014;10:453–8.PubMed
40.
go back to reference Kubo F, Takeichi M, Nakagawa S. Wnt2b inhibits differentiation of retinal progenitor cells in the absence of notch activity by downregulating the expression of proneural genes. Development. 2005;132:2759–70.CrossRefPubMed Kubo F, Takeichi M, Nakagawa S. Wnt2b inhibits differentiation of retinal progenitor cells in the absence of notch activity by downregulating the expression of proneural genes. Development. 2005;132:2759–70.CrossRefPubMed
41.
go back to reference Song H, Ki SH, Kim SG, Moon A. Activating transcription factor 2 mediates matrix metalloproteinase- 2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 2006;66:10487–96.CrossRefPubMed Song H, Ki SH, Kim SG, Moon A. Activating transcription factor 2 mediates matrix metalloproteinase- 2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 2006;66:10487–96.CrossRefPubMed
42.
go back to reference Shin I, Kim S, Song H, Kim HR, Moon A. H-ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem. 2005;280:14675–83.CrossRefPubMed Shin I, Kim S, Song H, Kim HR, Moon A. H-ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem. 2005;280:14675–83.CrossRefPubMed
43.
go back to reference Herishanu Y, Gibellini F, Njuguna N, Hazan-Halevy I, Keyvanfar K, Lee E, et al. CD44 signaling via PI3K/AKT and MAPK/ERK pathways protects CLL cells from spontaneous and drug induced apoptosis through MCL. Leuk Lymphoma. 2011;52:1758–69.CrossRefPubMedPubMedCentral Herishanu Y, Gibellini F, Njuguna N, Hazan-Halevy I, Keyvanfar K, Lee E, et al. CD44 signaling via PI3K/AKT and MAPK/ERK pathways protects CLL cells from spontaneous and drug induced apoptosis through MCL. Leuk Lymphoma. 2011;52:1758–69.CrossRefPubMedPubMedCentral
44.
go back to reference Lim S, Yoo BK, Kim HS, Gilmore HL, Lee Y, Lee HP, et al. Amyloid-β precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer. 2014;14:928–40.CrossRefPubMedPubMedCentral Lim S, Yoo BK, Kim HS, Gilmore HL, Lee Y, Lee HP, et al. Amyloid-β precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer. 2014;14:928–40.CrossRefPubMedPubMedCentral
45.
go back to reference Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and raptor in association with IKK. Genes Dev. 2008;22:1490–500.CrossRefPubMedPubMedCentral Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and raptor in association with IKK. Genes Dev. 2008;22:1490–500.CrossRefPubMedPubMedCentral
46.
go back to reference Prasad S, Ravindran J, Aggarwal BB. NF-kappa B and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336:25–37.CrossRefPubMed Prasad S, Ravindran J, Aggarwal BB. NF-kappa B and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336:25–37.CrossRefPubMed
48.
go back to reference Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N. Constitutive nuclear factor-b activity is crucial for human retinoblastoma cell viability. Am J Pathol. 2002;161:2229–40.CrossRefPubMedPubMedCentral Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N. Constitutive nuclear factor-b activity is crucial for human retinoblastoma cell viability. Am J Pathol. 2002;161:2229–40.CrossRefPubMedPubMedCentral
49.
go back to reference Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A. Identification of genes associated with tumorigenesis of retinoblastomaby microarray analysis. Genomics. 2007;90:344–53.CrossRefPubMed Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A. Identification of genes associated with tumorigenesis of retinoblastomaby microarray analysis. Genomics. 2007;90:344–53.CrossRefPubMed
50.
go back to reference Mallikarjuna K, Sundaram CS, Sharma Y, Deepa PR, Khetan V, Gopal L, et al. Comparative proteomic analysis of differentially expressed proteins in primary retinoblastoma tumors. Proteomics Clin Appl. 2010;4:449–63.CrossRefPubMed Mallikarjuna K, Sundaram CS, Sharma Y, Deepa PR, Khetan V, Gopal L, et al. Comparative proteomic analysis of differentially expressed proteins in primary retinoblastoma tumors. Proteomics Clin Appl. 2010;4:449–63.CrossRefPubMed
51.
go back to reference Daxecker F, Daxenbichler G, Marth C. Cellular retinoic acid binding protein (CRABP) in retinoblastoma. Ophthalmic Paediatr Genet. 1987;8:47–8.CrossRefPubMed Daxecker F, Daxenbichler G, Marth C. Cellular retinoic acid binding protein (CRABP) in retinoblastoma. Ophthalmic Paediatr Genet. 1987;8:47–8.CrossRefPubMed
52.
go back to reference Daxecker F, Daxenbichler G, Marth C. Retinoic acid- and retinol binding proteins in melanomas and retinoblastomas. Ophthalmologica. 1987;194:126–7.CrossRefPubMed Daxecker F, Daxenbichler G, Marth C. Retinoic acid- and retinol binding proteins in melanomas and retinoblastomas. Ophthalmologica. 1987;194:126–7.CrossRefPubMed
53.
go back to reference Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 2008;7:94.CrossRefPubMedPubMedCentral Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 2008;7:94.CrossRefPubMedPubMedCentral
54.
go back to reference Lee HS, Kim BH, Cho NY, Yoo EJ, Choi M, Shin SH, et al. Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res. 2009;15:812–20.CrossRefPubMed Lee HS, Kim BH, Cho NY, Yoo EJ, Choi M, Shin SH, et al. Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res. 2009;15:812–20.CrossRefPubMed
55.
go back to reference Miyake T, Ueda Y, Matsuzaki S, Miyatake T, Yoshino K, Fujita M, et al. CRABP1-reduced expression is associated with poorer prognosis in serous and clear cell ovarian adenocarcinoma. J Cancer Res Clin Oncol. 2011;137:715–22.CrossRefPubMed Miyake T, Ueda Y, Matsuzaki S, Miyatake T, Yoshino K, Fujita M, et al. CRABP1-reduced expression is associated with poorer prognosis in serous and clear cell ovarian adenocarcinoma. J Cancer Res Clin Oncol. 2011;137:715–22.CrossRefPubMed
56.
go back to reference Persaud SD, Lin YW, Wu CY, Kagechika H, Wei LN. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal. 2013;25:19–25.CrossRefPubMed Persaud SD, Lin YW, Wu CY, Kagechika H, Wei LN. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal. 2013;25:19–25.CrossRefPubMed
57.
go back to reference Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2015;1600:17–31.CrossRefPubMed Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2015;1600:17–31.CrossRefPubMed
58.
go back to reference Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodelling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90.CrossRefPubMed Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodelling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90.CrossRefPubMed
59.
go back to reference Jünemann AG, Rejdak R, Huchzermeyer C, Maciejewski R, Grieb P, Kruse FE, et al. Elevated vitreous body glial fibrillary acidic protein in retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2015;253:2181–6.CrossRefPubMedPubMedCentral Jünemann AG, Rejdak R, Huchzermeyer C, Maciejewski R, Grieb P, Kruse FE, et al. Elevated vitreous body glial fibrillary acidic protein in retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2015;253:2181–6.CrossRefPubMedPubMedCentral
Metadata
Title
Proteomic analysis of differentially expressed proteins in vitreous humor of patients with retinoblastoma using iTRAQ-coupled ESI-MS/MS approach
Authors
Jasmine Naru
Ritu Aggarwal
Usha Singh
Ashok Kumar Mohanty
Deepak Bansal
Navdeep Mangat
Nandita Kakkar
Navneet Agnihotri
Publication date
01-10-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 10/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5162-3

Other articles of this Issue 10/2016

Tumor Biology 10/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine