Skip to main content
Top
Published in: Tumor Biology 10/2016

01-10-2016 | Review

The interaction of Wnt-11 and signalling cascades in prostate cancer

Authors: Sarah Koushyar, Guy H. Grant, Pinar Uysal-Onganer

Published in: Tumor Biology | Issue 10/2016

Login to get access

Abstract

Prostate cancer (PCa) is the second most common cancer among the male population. Conventional therapies target androgen signalling, which drives tumour growth; however, they provide limited survival benefits for patients. It is essential, therefore, to develop a more specific biomarker than the current gold standard, PSA testing. The Wnt signalling pathway induces expression of target genes through cell surface receptors. A non-canonical member of this family, Wnt-11, is evolutionarily highly conserved and is normally expressed by various cells in the developing embryo, as well as in the heart, liver and skeletal muscle of adult humans. We comprehensively review several cell signalling pathways to explain how they interact with Wnt-11, demonstrating its use as a potential biomarker for PCa. Several studies have shown that the expression of Wnt-11 is associated with gastric, renal and colorectal adenocarcinomas and PCa. Moreover, Wnt-11 affects extracellular matrix composition and cytoskeletal rearrangement, and it is required for proliferation and/or survival during cell differentiation. It was found that PCa cell lines express high levels of Wnt-11, which allows differentiation of the epithelial prostate tumour cells to neuron-like (NE) cells. The NE cells produce additional factors that can cause regression after treatment. Accumulating evidence shows that Wnt-11 could be a potential biomarker in diagnosing PCa. Many studies have shown both non-canonical and canonical Wnts interact with several signalling cascades such as PKC, JNK, NF-κB, Rho, PKA and PI3K. In particular, evidence demonstrates Wnt-11 is involved in the progression of PCa, thus it could have the potential to become both a specific disease marker and an important therapeutic target.
Literature
1.
go back to reference Wilt TJ, Ahmed HU. Prostate cancer screening and the management of clinically localized disease. BMJ (Clinical research ed). 2013;346:f325. Wilt TJ, Ahmed HU. Prostate cancer screening and the management of clinically localized disease. BMJ (Clinical research ed). 2013;346:f325.
3.
go back to reference Makarov DV, Loeb S, Getzenberg RH, Partin AW. Biomarkers for prostate cancer. Annu Rev Med. 2009;60:139–51.CrossRefPubMed Makarov DV, Loeb S, Getzenberg RH, Partin AW. Biomarkers for prostate cancer. Annu Rev Med. 2009;60:139–51.CrossRefPubMed
5.
go back to reference Hagglof C, Hammarsten P, Stromvall K, Egevad L, Josefsson A, Stattin P. TMPRSS2-ERG expression predicts prostate cancer survival and associated with stromal biomarkers. PLoS One. 2014;9(2):e86824.CrossRefPubMedPubMedCentral Hagglof C, Hammarsten P, Stromvall K, Egevad L, Josefsson A, Stattin P. TMPRSS2-ERG expression predicts prostate cancer survival and associated with stromal biomarkers. PLoS One. 2014;9(2):e86824.CrossRefPubMedPubMedCentral
6.
go back to reference Hausmann G, Banziger C, Basler K. Helping wingless take flight: how WNT proteins are secreted. Nat Rev Mol Cell Biol. 2007;8(4):331–6.CrossRefPubMed Hausmann G, Banziger C, Basler K. Helping wingless take flight: how WNT proteins are secreted. Nat Rev Mol Cell Biol. 2007;8(4):331–6.CrossRefPubMed
8.
go back to reference Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010;2(2):a002915.CrossRefPubMedPubMedCentral Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010;2(2):a002915.CrossRefPubMedPubMedCentral
9.
go back to reference Wang Y. Wnt/planar cell polarity signalling: a new paradigm for cance therapy. Mol Cancer Ther. 2009;8(8):2103–9.CrossRefPubMed Wang Y. Wnt/planar cell polarity signalling: a new paradigm for cance therapy. Mol Cancer Ther. 2009;8(8):2103–9.CrossRefPubMed
10.
go back to reference Schlessinger K, Hall A, Tolwinski N. Wnt signalling pathways meet Rho GTPases. Genes Dev. 2009;23:265–77.CrossRefPubMed Schlessinger K, Hall A, Tolwinski N. Wnt signalling pathways meet Rho GTPases. Genes Dev. 2009;23:265–77.CrossRefPubMed
11.
12.
go back to reference Uysal-Onganer P, Kypta RM. Wnt11 in 2011—the regulation and function of a non-canonical Wnt. Acta Physiol. 2012;204(1):52–64.CrossRef Uysal-Onganer P, Kypta RM. Wnt11 in 2011—the regulation and function of a non-canonical Wnt. Acta Physiol. 2012;204(1):52–64.CrossRef
13.
go back to reference Zhu H, Mazor M, Kawano Y. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res. 2004;64(21):7918–26.CrossRefPubMed Zhu H, Mazor M, Kawano Y. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res. 2004;64(21):7918–26.CrossRefPubMed
14.
15.
go back to reference Uysal-Onganer P, Kawano Y, Caro M, Walker MM, Diez S, Darrington RS, et al. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol Cancer. 2010;9:55.CrossRefPubMedPubMedCentral Uysal-Onganer P, Kawano Y, Caro M, Walker MM, Diez S, Darrington RS, et al. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol Cancer. 2010;9:55.CrossRefPubMedPubMedCentral
16.
go back to reference Newton A. Protein Kinase C: poised to signal. Am J Phsiol Endocrinol Metab. 2010;298(3). Newton A. Protein Kinase C: poised to signal. Am J Phsiol Endocrinol Metab. 2010;298(3).
17.
go back to reference Garg R, Blando J, Perez C, Wang H, Benavides F, Kazaniez M. Activation of nuclear factor kB (NF-kB) in prostate cancer is mediated by protein kinase C ε (PKCε). J Biol Chem. 2012;287(44):37570–82.CrossRefPubMedPubMedCentral Garg R, Blando J, Perez C, Wang H, Benavides F, Kazaniez M. Activation of nuclear factor kB (NF-kB) in prostate cancer is mediated by protein kinase C ε (PKCε). J Biol Chem. 2012;287(44):37570–82.CrossRefPubMedPubMedCentral
18.
go back to reference Luna-Ulloa L, Hernandez-Maqueda J, Castaneda-Patlan M, Robles-Flores M. Protein Kinase C in Wnt signalling: implications in cancer initiation and progression. IUBMB Life. 63(10):915–21. Luna-Ulloa L, Hernandez-Maqueda J, Castaneda-Patlan M, Robles-Flores M. Protein Kinase C in Wnt signalling: implications in cancer initiation and progression. IUBMB Life. 63(10):915–21.
19.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.CrossRefPubMed Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.CrossRefPubMed
20.
go back to reference Saadeddin A, Babaei-Jadidi R, Spencer-Dene B, Nateri A. The links between transcription, beta-catenin/JNK signalling, and carcinogenesis. Mol Cancer Res. 2009;7(8):1189–96.CrossRefPubMed Saadeddin A, Babaei-Jadidi R, Spencer-Dene B, Nateri A. The links between transcription, beta-catenin/JNK signalling, and carcinogenesis. Mol Cancer Res. 2009;7(8):1189–96.CrossRefPubMed
22.
go back to reference Ma J, Zhang L, Han W, Shen T, Ma C, Liu Y, et al. Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res. 2012;53(6):1093–105.CrossRefPubMedPubMedCentral Ma J, Zhang L, Han W, Shen T, Ma C, Liu Y, et al. Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res. 2012;53(6):1093–105.CrossRefPubMedPubMedCentral
25.
go back to reference Spencer G, Utting J, Etheridge S, Arnett T, Genever P. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFKappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci. 2006;119(9):1283–96.CrossRefPubMed Spencer G, Utting J, Etheridge S, Arnett T, Genever P. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFKappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci. 2006;119(9):1283–96.CrossRefPubMed
26.
go back to reference Modder UI, Oursler MJ, Khosla S, Monroe DG. Wnt10b activates the Wnt, notch, and NFkappaB pathways in U2OS osteosarcoma cells. J Cell Biochem. 2011;112(5):1392–402.CrossRefPubMedPubMedCentral Modder UI, Oursler MJ, Khosla S, Monroe DG. Wnt10b activates the Wnt, notch, and NFkappaB pathways in U2OS osteosarcoma cells. J Cell Biochem. 2011;112(5):1392–402.CrossRefPubMedPubMedCentral
27.
go back to reference Lawrence T. The nuclear factor NK-kB pathway in inflammation. Inflammation. 2009:1–10. Lawrence T. The nuclear factor NK-kB pathway in inflammation. Inflammation. 2009:1–10.
28.
go back to reference Taylor S, Beuchler J, Yonemoto W. cAMP-dependent protein kinase:framework for a diverse family of regulatory enzymes. Annu.Rev.Biochem. 1990;59:971–1005.CrossRefPubMed Taylor S, Beuchler J, Yonemoto W. cAMP-dependent protein kinase:framework for a diverse family of regulatory enzymes. Annu.Rev.Biochem. 1990;59:971–1005.CrossRefPubMed
29.
go back to reference Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9–22.CrossRefPubMed Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9–22.CrossRefPubMed
30.
go back to reference Sarwar M, Persson JL. The protein kinase A (PKA) intracellular pathway and androgen receptor: a novel mechanism underlying the castration-resistant and metastatic prostate cancer. J Cancer Sci & Ther. 2012;01(S5). Sarwar M, Persson JL. The protein kinase A (PKA) intracellular pathway and androgen receptor: a novel mechanism underlying the castration-resistant and metastatic prostate cancer. J Cancer Sci & Ther. 2012;01(S5).
31.
go back to reference Khor L, Bae K, Paulus R. MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer. J Clin Oncol. 2009;27(19). Khor L, Bae K, Paulus R. MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer. J Clin Oncol. 2009;27(19).
32.
go back to reference Kim C, Xuong N, Taylor S. Crystal structure of a complex. Sci Mag. 2005;307:690–6. Kim C, Xuong N, Taylor S. Crystal structure of a complex. Sci Mag. 2005;307:690–6.
33.
go back to reference Sainz R, Mayo J, Tan D, Len J, Manchester L, Resiter R. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate. 2005;63(1):29–75.CrossRefPubMed Sainz R, Mayo J, Tan D, Len J, Manchester L, Resiter R. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate. 2005;63(1):29–75.CrossRefPubMed
34.
go back to reference Shen R, Dorai T, Olsson C, Buttyan R, Katz A, Szaboles M. Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urol Oncol. 1997;3(2):67–75.CrossRefPubMed Shen R, Dorai T, Olsson C, Buttyan R, Katz A, Szaboles M. Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urol Oncol. 1997;3(2):67–75.CrossRefPubMed
35.
go back to reference Caretta A, Caretta C. Protein kinase A in cancer. Cancer. 2011;3(1):913–26.CrossRef Caretta A, Caretta C. Protein kinase A in cancer. Cancer. 2011;3(1):913–26.CrossRef
36.
go back to reference Gallegos TF, Kouznetsova V, Kudlicka K, Sweeney DE, Bush KT, Willert K, et al. A protein kinase A and Wnt-dependent network regulating an intermediate stage in epithelial tubulogenesis during kidney development. Dev Biol. 2012;364(1):11–21.CrossRefPubMedPubMedCentral Gallegos TF, Kouznetsova V, Kudlicka K, Sweeney DE, Bush KT, Willert K, et al. A protein kinase A and Wnt-dependent network regulating an intermediate stage in epithelial tubulogenesis during kidney development. Dev Biol. 2012;364(1):11–21.CrossRefPubMedPubMedCentral
37.
go back to reference Ridley AJ. Rho GTPases and cell migration. J Cell Sci. 2001;114(15):2713–22.PubMed Ridley AJ. Rho GTPases and cell migration. J Cell Sci. 2001;114(15):2713–22.PubMed
38.
39.
go back to reference Kusama T, Mukai M, Endo T, Ishikawa O, Tatsuta M, Nakamura H, et al. Inactivation of Rho GTPases by p190 RhoGAP reduces human pancreatic cancer cell invasion and metastasis. Cancer Sci. 2006;97(9):848–53.CrossRefPubMed Kusama T, Mukai M, Endo T, Ishikawa O, Tatsuta M, Nakamura H, et al. Inactivation of Rho GTPases by p190 RhoGAP reduces human pancreatic cancer cell invasion and metastasis. Cancer Sci. 2006;97(9):848–53.CrossRefPubMed
40.
go back to reference Rathinam R, Berrier A, Alahari S. Role of Rho GTPases and their regulations in cancer progression. Front Biosci. 2011:2561–71. Rathinam R, Berrier A, Alahari S. Role of Rho GTPases and their regulations in cancer progression. Front Biosci. 2011:2561–71.
41.
go back to reference Fernandez-Borja M, Janssen L, Verwoerd D, Horijk P, Neefjes J. RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. J Cell Sci. 2005;118(12):2661–70.CrossRefPubMed Fernandez-Borja M, Janssen L, Verwoerd D, Horijk P, Neefjes J. RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. J Cell Sci. 2005;118(12):2661–70.CrossRefPubMed
42.
go back to reference Huang M, Prendergast G. RhoB in cancer suppression. Histol Histopathol. 2006;21(1):213–8.PubMed Huang M, Prendergast G. RhoB in cancer suppression. Histol Histopathol. 2006;21(1):213–8.PubMed
43.
go back to reference Lui M, Tang Q, Qui M, Lang N, Li M, Zheng Y, et al. miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011;585(19):2998–3005.CrossRef Lui M, Tang Q, Qui M, Lang N, Li M, Zheng Y, et al. miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011;585(19):2998–3005.CrossRef
44.
go back to reference Wheeler AP, Ridley AJ. RhoB affects macrophage adhesion, integrin expression and migration. Exp Cell Res. 2007;313(16):3505–16.CrossRefPubMed Wheeler AP, Ridley AJ. RhoB affects macrophage adhesion, integrin expression and migration. Exp Cell Res. 2007;313(16):3505–16.CrossRefPubMed
45.
go back to reference Vega FM, Thomas M, Reymond N, Ridley AJ. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Commun Signal. 2015;13:6.CrossRefPubMedPubMedCentral Vega FM, Thomas M, Reymond N, Ridley AJ. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Commun Signal. 2015;13:6.CrossRefPubMedPubMedCentral
46.
go back to reference Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009;5(15):4799–805. Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009;5(15):4799–805.
47.
go back to reference Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, et al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood. 2010;115(3):559–69.CrossRefPubMedPubMedCentral Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, et al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood. 2010;115(3):559–69.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr-Relat Cancer. 2013;20(3):R83–99.CrossRefPubMed Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr-Relat Cancer. 2013;20(3):R83–99.CrossRefPubMed
50.
go back to reference Tomlins S, Rhodes D, Perner S, Dhanasekaran S, Mehra R, Sun X, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.CrossRefPubMed Tomlins S, Rhodes D, Perner S, Dhanasekaran S, Mehra R, Sun X, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.CrossRefPubMed
51.
go back to reference Carver B, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41(5):619–24.CrossRefPubMedPubMedCentral Carver B, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41(5):619–24.CrossRefPubMedPubMedCentral
52.
go back to reference Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.CrossRefPubMed Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.CrossRefPubMed
53.
go back to reference Staal FJT, Sen JM. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol. 2008;38(7):1788–94.CrossRefPubMedPubMedCentral Staal FJT, Sen JM. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol. 2008;38(7):1788–94.CrossRefPubMedPubMedCentral
Metadata
Title
The interaction of Wnt-11 and signalling cascades in prostate cancer
Authors
Sarah Koushyar
Guy H. Grant
Pinar Uysal-Onganer
Publication date
01-10-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 10/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5263-z

Other articles of this Issue 10/2016

Tumor Biology 10/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine