Skip to main content
Top
Published in: Digestive Diseases and Sciences 11/2010

01-11-2010 | Review

Proteomic Analyses Lead to a Better Understanding of Celiac Disease: Focus on Epitope Recognition and Autoantibodies

Authors: Valli De Re, Maria Paola Simula, Vincenzo Canzonieri, Renato Cannizzaro

Published in: Digestive Diseases and Sciences | Issue 11/2010

Login to get access

Abstract

Proteomic technologies are being used with increasing frequency in the scientific community. In this review, we have highlighted their use in celiac disease (CD). The available techniques, which include two-dimensional (2D) gel electrophoresis, mass spectrometry, and antibody and tissue arrays, have been used to identify proteins or changes in protein expression specific to gut tissue from patients with CD. A number of studies have employed proteomic methodologies to determine the diagnostic biomarkers in body fluids or to examine changes in protein expression and posttranslational modifications during signaling. A fast technological development of these methods, along with the combination of classic techniques with proteomics, will lead to new discoveries, which will consent a better understanding of the pathogenesis of CD.
Literature
1.
go back to reference Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol. 2002;283:G996–G1003.PubMed Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol. 2002;283:G996–G1003.PubMed
2.
go back to reference Ferranti P, Mamone G, Picariello G, Addeo F. Mass spectrometry analysis of gliadins in celiac disease. J Mass Spectrom. 2007;42:1531–1548.CrossRefPubMed Ferranti P, Mamone G, Picariello G, Addeo F. Mass spectrometry analysis of gliadins in celiac disease. J Mass Spectrom. 2007;42:1531–1548.CrossRefPubMed
3.
go back to reference Molberg O, McAdam S, Lundin KE, Kristiansen C, et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol. 2001;31:1317–1323.CrossRefPubMed Molberg O, McAdam S, Lundin KE, Kristiansen C, et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol. 2001;31:1317–1323.CrossRefPubMed
4.
go back to reference Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci. 2004;101:4175–4179.CrossRefPubMed Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci. 2004;101:4175–4179.CrossRefPubMed
5.
go back to reference Salvati VM, Mazzarella G, Gianfrani C, Levings MK, Stefanile R, De Giulio B. Recombinant human IL-10 suppresses gliadin dependent T cell activation in ex vivo cultured celiac intestinal mucosa. Gut. 2005;54:46–53.CrossRefPubMed Salvati VM, Mazzarella G, Gianfrani C, Levings MK, Stefanile R, De Giulio B. Recombinant human IL-10 suppresses gliadin dependent T cell activation in ex vivo cultured celiac intestinal mucosa. Gut. 2005;54:46–53.CrossRefPubMed
6.
go back to reference Sollid LM, Khosla C. Future therapeutic options for celiac disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2:140–147.CrossRefPubMed Sollid LM, Khosla C. Future therapeutic options for celiac disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2:140–147.CrossRefPubMed
7.
go back to reference Gass J, Bethune MT, Siegel M, Spencer A, Khosla C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology. 2007;133:472–480.CrossRefPubMed Gass J, Bethune MT, Siegel M, Spencer A, Khosla C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology. 2007;133:472–480.CrossRefPubMed
8.
go back to reference Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model implications for coeliac disease. Gut. 2008;57:25–32.CrossRefPubMed Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model implications for coeliac disease. Gut. 2008;57:25–32.CrossRefPubMed
9.
go back to reference Rizzello CG, De Angelis M, Di Cagno R, Camarca A, et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing new perspectives for celiac disease. Appl Environ Microbiol. 2007;73:4499–4507.CrossRefPubMed Rizzello CG, De Angelis M, Di Cagno R, Camarca A, et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing new perspectives for celiac disease. Appl Environ Microbiol. 2007;73:4499–4507.CrossRefPubMed
10.
go back to reference Marti T, Molberg O, Li Q, Gray GM, Khosla C, Sollid LM. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten chemical and immunological characterization. J Pharmacol Exp Ther. 2005;312:19–26.CrossRefPubMed Marti T, Molberg O, Li Q, Gray GM, Khosla C, Sollid LM. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten chemical and immunological characterization. J Pharmacol Exp Ther. 2005;312:19–26.CrossRefPubMed
11.
go back to reference Caputo I, D’Amato A, Troncone R, Auricchio S, Esposito C. Transglutaminase 2 in celiac disease. Amino Acids. 2004;26:381–386.CrossRefPubMed Caputo I, D’Amato A, Troncone R, Auricchio S, Esposito C. Transglutaminase 2 in celiac disease. Amino Acids. 2004;26:381–386.CrossRefPubMed
12.
go back to reference Stenman SM, Lindfors K, Korponay-Szabo IR, Lohi O, et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 2008;9:6.CrossRefPubMed Stenman SM, Lindfors K, Korponay-Szabo IR, Lohi O, et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 2008;9:6.CrossRefPubMed
13.
14.
go back to reference Utz PJ, Anderson P. Posttranslational protein modifications apoptosis and the bypass of tolerance to autoantigens. Arthritis Rheum. 1998;41:1152–1160.CrossRefPubMed Utz PJ, Anderson P. Posttranslational protein modifications apoptosis and the bypass of tolerance to autoantigens. Arthritis Rheum. 1998;41:1152–1160.CrossRefPubMed
15.
go back to reference Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006;55:1512–1520.CrossRefPubMed Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006;55:1512–1520.CrossRefPubMed
16.
go back to reference Szebeni B, Veres G, Dezsofi A, Rusai K, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45:187–193.CrossRefPubMed Szebeni B, Veres G, Dezsofi A, Rusai K, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45:187–193.CrossRefPubMed
17.
go back to reference Hue S, Mention JJ, Monteiro RC, Zhang S, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21:367–377.CrossRefPubMed Hue S, Mention JJ, Monteiro RC, Zhang S, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21:367–377.CrossRefPubMed
18.
go back to reference Meresse B, Chen Z, Ciszewski C, Tretiakova M, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–366.CrossRefPubMed Meresse B, Chen Z, Ciszewski C, Tretiakova M, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–366.CrossRefPubMed
19.
go back to reference Schumanm M, Richter JF, Wedell I, Moos V, et al. Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut. 2008;57:747–754.CrossRef Schumanm M, Richter JF, Wedell I, Moos V, et al. Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut. 2008;57:747–754.CrossRef
20.
go back to reference Orrù S, Caputo I, D’Amato A, Ruoppolo M, Esposito C. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J Biol Chem. 2003;278:31766–31773.CrossRefPubMed Orrù S, Caputo I, D’Amato A, Ruoppolo M, Esposito C. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J Biol Chem. 2003;278:31766–31773.CrossRefPubMed
21.
go back to reference Piredda L, Amendola A, Colizzi V, Davies PJ, et al. Lack of ‘tissue’ transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells relationship to development of autoimmunity in MRLIpr/Ipr mice. Cell Death Differ. 1997;4:463–472.CrossRefPubMed Piredda L, Amendola A, Colizzi V, Davies PJ, et al. Lack of ‘tissue’ transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells relationship to development of autoimmunity in MRLIpr/Ipr mice. Cell Death Differ. 1997;4:463–472.CrossRefPubMed
22.
go back to reference Nicholas B, Smethurst P, Verderio E, Jones R, Griffin M. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death a mechanism for maintaining tissue integrity. Biochem J. 2003;371:413–422.CrossRefPubMed Nicholas B, Smethurst P, Verderio E, Jones R, Griffin M. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death a mechanism for maintaining tissue integrity. Biochem J. 2003;371:413–422.CrossRefPubMed
23.
go back to reference Carroccio A, Brusca I, Iacono G, Di Prima L, et al. Correlation with intestinal mucosa damage and comparison of ELISA with the immunofluorescence assay. Clin Chem. 2005;51:917–920.CrossRefPubMed Carroccio A, Brusca I, Iacono G, Di Prima L, et al. Correlation with intestinal mucosa damage and comparison of ELISA with the immunofluorescence assay. Clin Chem. 2005;51:917–920.CrossRefPubMed
25.
go back to reference Caggiari L, Cannizzaro R, De Zorzi M, Canzonieri V, Da Ponte A, De Re V. A new HLA-A*680106 allele identified in individuals with celiac disease from the Friuli area of northeast Italy. Tissue Antigens. 2008;72:491–492.CrossRefPubMed Caggiari L, Cannizzaro R, De Zorzi M, Canzonieri V, Da Ponte A, De Re V. A new HLA-A*680106 allele identified in individuals with celiac disease from the Friuli area of northeast Italy. Tissue Antigens. 2008;72:491–492.CrossRefPubMed
26.
go back to reference Collin P, Kaukinen K, Vogelsang H, Korponay-Szabo I, et al. Antiendomysial and antihuman recombinant tissue transglutaminase antibodies in the diagnosis of coeliac disease a biopsy-proven European multicentre study. Eur J Gastroenterol Hepatol. 2005;17:85–91.CrossRefPubMed Collin P, Kaukinen K, Vogelsang H, Korponay-Szabo I, et al. Antiendomysial and antihuman recombinant tissue transglutaminase antibodies in the diagnosis of coeliac disease a biopsy-proven European multicentre study. Eur J Gastroenterol Hepatol. 2005;17:85–91.CrossRefPubMed
27.
go back to reference Salmi T, Collin P, Korponay-Szabó I, Laurila K, et al. Endomysial antibody-negative coeliac disease clinical characteristics and intestinal autoantibody deposits. Gut. 2006;55:1746–1753.CrossRefPubMed Salmi T, Collin P, Korponay-Szabó I, Laurila K, et al. Endomysial antibody-negative coeliac disease clinical characteristics and intestinal autoantibody deposits. Gut. 2006;55:1746–1753.CrossRefPubMed
28.
go back to reference Stulík J, Hernychová L, Porkertová S, et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics. 2003;3:951–956.CrossRefPubMed Stulík J, Hernychová L, Porkertová S, et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics. 2003;3:951–956.CrossRefPubMed
29.
go back to reference Bertini I, Calabrò A, De Carli V, Luchinat C, et al. The metabonomic signature of celiac disease. J Proteome Res. 2009;8:170–177.CrossRefPubMed Bertini I, Calabrò A, De Carli V, Luchinat C, et al. The metabonomic signature of celiac disease. J Proteome Res. 2009;8:170–177.CrossRefPubMed
30.
go back to reference Simula MP, Cannizzaro R, Canzonieri V, Pavan A, et al. PPAR signalling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med. 2010;16(5–6):199–209.PubMed Simula MP, Cannizzaro R, Canzonieri V, Pavan A, et al. PPAR signalling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med. 2010;16(5–6):199–209.PubMed
31.
go back to reference De Re V, Simula MP, Notarpietro A, Canzonieri V, Cannizzaro R, Toffoli G. Do gliadin and tissue transglutaminase mediate PPAR downregulation in intestinal cells of patients with celiac disease? GUT (in press). De Re V, Simula MP, Notarpietro A, Canzonieri V, Cannizzaro R, Toffoli G. Do gliadin and tissue transglutaminase mediate PPAR downregulation in intestinal cells of patients with celiac disease? GUT (in press).
32.
go back to reference Barabási AL, Oltvai ZN. Network biology understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–113.CrossRefPubMed Barabási AL, Oltvai ZN. Network biology understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–113.CrossRefPubMed
33.
go back to reference Luciani A, Villella VR, Vasaturo A, et al. Lysosomal accumulation of gliadin p31–43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARγ downregulation in intestinal epithelial cells and coeliac mucosa. Gut. 2010;59:311–319.CrossRefPubMed Luciani A, Villella VR, Vasaturo A, et al. Lysosomal accumulation of gliadin p31–43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARγ downregulation in intestinal epithelial cells and coeliac mucosa. Gut. 2010;59:311–319.CrossRefPubMed
34.
go back to reference Bünger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Müller M. Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics. 2007;30:192–204.CrossRefPubMed Bünger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Müller M. Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics. 2007;30:192–204.CrossRefPubMed
35.
go back to reference Tong-Chuan HE, Chan TA, Vogelstein B, Kinzler KW. PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell. 1999;99:335–345.CrossRef Tong-Chuan HE, Chan TA, Vogelstein B, Kinzler KW. PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell. 1999;99:335–345.CrossRef
36.
go back to reference Lefebrve A-M, Najib J, Dewreumaux P, Najib J, et al. Activation of the peroxisome proliferator activated receptor gamma promotes the development of colon tumours in C57BL/6 J-APCMin/+ mice. Nat Med. 1998;4:1053–1057.CrossRef Lefebrve A-M, Najib J, Dewreumaux P, Najib J, et al. Activation of the peroxisome proliferator activated receptor gamma promotes the development of colon tumours in C57BL/6 J-APCMin/+ mice. Nat Med. 1998;4:1053–1057.CrossRef
37.
go back to reference Saez E, Tontonoz P, Nelson MC, Alvarez JG, et al. Activation of the nuclear receptor PPAR gamma enhance colon polyp formation. Nat Med. 1998;4:1058–1061.CrossRefPubMed Saez E, Tontonoz P, Nelson MC, Alvarez JG, et al. Activation of the nuclear receptor PPAR gamma enhance colon polyp formation. Nat Med. 1998;4:1058–1061.CrossRefPubMed
38.
go back to reference Curley CR, Monsuur AJ, Wapenaar MC, Rioux JD, Wijmenga C. A functional candidate screen for coeliac disease genes. Eur J Hum Genet. 2006;14:1215–1222.CrossRefPubMed Curley CR, Monsuur AJ, Wapenaar MC, Rioux JD, Wijmenga C. A functional candidate screen for coeliac disease genes. Eur J Hum Genet. 2006;14:1215–1222.CrossRefPubMed
39.
go back to reference De Re V, Simula MP, Cannizzaro R, et al. Galectin-10, eosinophils, and celiac disease. Ann NY Acad Sci. 2009;1173:357–364.CrossRefPubMed De Re V, Simula MP, Cannizzaro R, et al. Galectin-10, eosinophils, and celiac disease. Ann NY Acad Sci. 2009;1173:357–364.CrossRefPubMed
40.
go back to reference De Re V, Simula MP, Caggiari L, Orsez N, et al. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis. Ann NY Acad Sci. 2007;1109:429–440.CrossRefPubMed De Re V, Simula MP, Caggiari L, Orsez N, et al. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis. Ann NY Acad Sci. 2007;1109:429–440.CrossRefPubMed
41.
go back to reference Crabtree JE, Heatley RV, Losowsky ML. Immunoglobulin secretion by isolated intestinal lymphocytes spontaneous production and T cell regulation in normal small intestine and in patients with coeliac disease. Gut. 1989;30:347–354.CrossRefPubMed Crabtree JE, Heatley RV, Losowsky ML. Immunoglobulin secretion by isolated intestinal lymphocytes spontaneous production and T cell regulation in normal small intestine and in patients with coeliac disease. Gut. 1989;30:347–354.CrossRefPubMed
42.
go back to reference Scott BB, Scott DG, Losowsky MS. Jejunal mucosal immunoglobulins and complement in untreated coeliac disease. J Pathol. 1977;121:219–223.CrossRefPubMed Scott BB, Scott DG, Losowsky MS. Jejunal mucosal immunoglobulins and complement in untreated coeliac disease. J Pathol. 1977;121:219–223.CrossRefPubMed
43.
go back to reference Halstensen TS, Hvatum M, Scott H, Fausa O, Brandtzaeg P. Association of subepithelial deposition of activated complement and immunoglobulin G and M response to gluten in celiac disease. Gastroenterology. 1992;102:751–759.PubMed Halstensen TS, Hvatum M, Scott H, Fausa O, Brandtzaeg P. Association of subepithelial deposition of activated complement and immunoglobulin G and M response to gluten in celiac disease. Gastroenterology. 1992;102:751–759.PubMed
Metadata
Title
Proteomic Analyses Lead to a Better Understanding of Celiac Disease: Focus on Epitope Recognition and Autoantibodies
Authors
Valli De Re
Maria Paola Simula
Vincenzo Canzonieri
Renato Cannizzaro
Publication date
01-11-2010
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 11/2010
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-010-1323-1

Other articles of this Issue 11/2010

Digestive Diseases and Sciences 11/2010 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.