Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Prostate Cancer | Research

RNA N6-methyladenosine-modified-binding protein YTHDF1 promotes prostate cancer progression by regulating androgen function-related gene TRIM68

Authors: Qihong Nie, Xiaoyuan Wu, Yongming Huang, Tao Guo, Jin Kuang, Chuance Du

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Purpose

There is no report about the direct relationship between m6A modification and androgen receptor (AR)-related genes in prostate cancer (PC). We aimed to study the mechanisms of m6A methylation in regulating the pathogenesis of PC from the perspective of AR-related genes.

Methods

qRT-PCR was applied to detect the expression of m6A-related genes in PC cell with or without AR inhibitor. The effects of YTHDF1 knockdown on PC cell viability, apoptosis, migration and invasion were investigated using flow cytometry, wound healing and transwell assays, respectively. The mechanism of YTHDF1 action was investigated using m6A RNA immunoprecipitation (MeRIP) sequencing. The biological functions of YTHDF1 were also explored through in vivo experiments.

Results

YTHDF1 was significantly down-regulated in AR inhibitor group. YTHDF1 knockdown significantly decreased AR level, viability and m6A methylation level of PC cells. TRIM68 was identified as a direct target of YTHDF1. Both YTHDF1 and TRIM68 knockdown increased apoptosis, and decreased cell viability, migration, and invasion of PC cells, while TRIM68 overexpression reversed the effects of YTHDF1 knockdown on PC cells. In addition, knockdown of YTHDF1 or TRIM68 significantly decreased the m6A methylation level, and mRNA and protein levels of YTHDF1, TRIM68 and AR in PC cells, while TRIM68 overexpression increased the expression levels above. Furthermore, subcutaneous xenografts of nude mice also revealed that TRIM68 could reverse the effects of YTHDF1 knockdown in PC in vivo.

Conclusion

This study suggested the key role of YTHDF1-mediated m6A modification in PC progression by regulating androgen function-related gene TRIM68 in PC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li J, Xu C, Lee HJ, Ren S, Zi X, Zhang Z, Wang H, Yu Y, Yang C, Gao X. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020;580(7801):93–9.CrossRefPubMed Li J, Xu C, Lee HJ, Ren S, Zi X, Zhang Z, Wang H, Yu Y, Yang C, Gao X. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020;580(7801):93–9.CrossRefPubMed
2.
go back to reference Hudson SV, O’Malley DM, Miller SM. Achieving optimal delivery of follow-up care for prostate cancer survivors: improving patient outcomes. Patient related outcome measures. 2015;6:75–90.CrossRefPubMedPubMedCentral Hudson SV, O’Malley DM, Miller SM. Achieving optimal delivery of follow-up care for prostate cancer survivors: improving patient outcomes. Patient related outcome measures. 2015;6:75–90.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Health. 2019;37(3):288–95.CrossRefPubMed Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Health. 2019;37(3):288–95.CrossRefPubMed
5.
go back to reference Denis LJ, Griffiths K. Endocrine treatment in prostate cancer. Semin Surg Oncol. 2000;18(1):52–74.CrossRefPubMed Denis LJ, Griffiths K. Endocrine treatment in prostate cancer. Semin Surg Oncol. 2000;18(1):52–74.CrossRefPubMed
6.
go back to reference Davis ID, Martin AJ, Stockler MR, Begbie S, Chi KN, Chowdhury S, Coskinas X, Frydenberg M, Hague WE, Horvath LG. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med. 2019;381(2):121–31.CrossRefPubMed Davis ID, Martin AJ, Stockler MR, Begbie S, Chi KN, Chowdhury S, Coskinas X, Frydenberg M, Hague WE, Horvath LG. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med. 2019;381(2):121–31.CrossRefPubMed
7.
go back to reference Al-Salama ZT. Apalutamide: a review in non-metastatic castration-resistant prostate cancer. Drugs. 2019;79(14):1591–8.CrossRefPubMed Al-Salama ZT. Apalutamide: a review in non-metastatic castration-resistant prostate cancer. Drugs. 2019;79(14):1591–8.CrossRefPubMed
8.
go back to reference Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci. 1974;71(10):3971–5.CrossRefPubMedPubMedCentral Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci. 1974;71(10):3971–5.CrossRefPubMedPubMedCentral
9.
go back to reference Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Can Res. 2019;79(7):1285–92.CrossRef Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Can Res. 2019;79(7):1285–92.CrossRef
11.
go back to reference Ma X, Cao Z, Zhao S. m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci. 2020;24(7):3565–71.PubMed Ma X, Cao Z, Zhao S. m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci. 2020;24(7):3565–71.PubMed
12.
go back to reference Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y, Luo Y. RNA m6A methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther. 2019;12:9143.CrossRefPubMedPubMedCentral Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y, Luo Y. RNA m6A methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther. 2019;12:9143.CrossRefPubMedPubMedCentral
13.
go back to reference Zhu K, Li Y, Xu Y. The FTO m6A demethylase inhibits the invasion and migration of prostate cancer cells by regulating total m6A levels. Life Sci. 2021;271: 119180.CrossRefPubMed Zhu K, Li Y, Xu Y. The FTO m6A demethylase inhibits the invasion and migration of prostate cancer cells by regulating total m6A levels. Life Sci. 2021;271: 119180.CrossRefPubMed
14.
go back to reference Xia L, Han Q, Duan X, Zhu Y, Pan J, Dong B, Xia W, Xue W, Sha J. m(6)A-induced repression of SIAH1 facilitates alternative splicing of androgen receptor variant 7 by regulating CPSF1. Mol Ther Nucleic Acids. 2022;28:219–30.CrossRefPubMedPubMedCentral Xia L, Han Q, Duan X, Zhu Y, Pan J, Dong B, Xia W, Xue W, Sha J. m(6)A-induced repression of SIAH1 facilitates alternative splicing of androgen receptor variant 7 by regulating CPSF1. Mol Ther Nucleic Acids. 2022;28:219–30.CrossRefPubMedPubMedCentral
15.
go back to reference Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.CrossRefPubMed Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.CrossRefPubMed
19.
go back to reference McKenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108(4):465–74.CrossRefPubMed McKenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108(4):465–74.CrossRefPubMed
20.
go back to reference Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.CrossRefPubMed Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.CrossRefPubMed
21.
go back to reference Faus H, Haendler B. Post-translational modifications of steroid receptors. Biomed Pharmacother. 2006;60(9):520–8.CrossRefPubMed Faus H, Haendler B. Post-translational modifications of steroid receptors. Biomed Pharmacother. 2006;60(9):520–8.CrossRefPubMed
22.
go back to reference Gioeli D, Ficarro SB, Kwiek JJ, Aaronson D, Hancock M, Catling AD, White FM, Christian RE, Settlage RE, Shabanowitz J, et al. Androgen receptor phosphorylation. regulation and identification of the phosphorylation sites. J Biol Chem. 2002;277(32):29304–14.CrossRefPubMed Gioeli D, Ficarro SB, Kwiek JJ, Aaronson D, Hancock M, Catling AD, White FM, Christian RE, Settlage RE, Shabanowitz J, et al. Androgen receptor phosphorylation. regulation and identification of the phosphorylation sites. J Biol Chem. 2002;277(32):29304–14.CrossRefPubMed
24.
go back to reference Wang Q, Guo X, Li L, Gao Z, Su X, Ji M, Liu J. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911.CrossRefPubMedPubMedCentral Wang Q, Guo X, Li L, Gao Z, Su X, Ji M, Liu J. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911.CrossRefPubMedPubMedCentral
25.
go back to reference Somasekharan SP, Saxena N, Zhang F, Beraldi E, Huang JN, Gentle C, Fazli L, Thi M, Sorensen PH, Gleave M. Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Res. 2022;50(2):1069–91.CrossRefPubMed Somasekharan SP, Saxena N, Zhang F, Beraldi E, Huang JN, Gentle C, Fazli L, Thi M, Sorensen PH, Gleave M. Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Res. 2022;50(2):1069–91.CrossRefPubMed
26.
go back to reference Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H, Hu Y. N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. J Cancer. 2021;12(3):682–92.CrossRefPubMedPubMedCentral Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H, Hu Y. N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. J Cancer. 2021;12(3):682–92.CrossRefPubMedPubMedCentral
27.
go back to reference Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99.CrossRefPubMedPubMedCentral Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99.CrossRefPubMedPubMedCentral
29.
go back to reference Pi J, Wang W, Ji M, Wang X, Wei X, Jin J, Liu T, Qiang J, Qi Z, Li F, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7. Cancer Res. 2021;81(10):2651–65.CrossRefPubMed Pi J, Wang W, Ji M, Wang X, Wei X, Jin J, Liu T, Qiang J, Qi Z, Li F, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7. Cancer Res. 2021;81(10):2651–65.CrossRefPubMed
30.
go back to reference Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, Liu Y, Wang J, Dougherty U, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.CrossRefPubMedPubMedCentral Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, Liu Y, Wang J, Dougherty U, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.CrossRefPubMedPubMedCentral
31.
go back to reference Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6(1):74.CrossRefPubMedPubMedCentral Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6(1):74.CrossRefPubMedPubMedCentral
34.
go back to reference Chen XY, Liang R, Yi YC, Fan HN, Chen M, Zhang J, Zhu JS. The m(6)A reader YTHDF1 facilitates the tumorigenesis and metastasis of gastric cancer via USP14 translation in an m(6)A-dependent manner. Front Cell Dev Biol. 2021;9:647702.CrossRefPubMedPubMedCentral Chen XY, Liang R, Yi YC, Fan HN, Chen M, Zhang J, Zhu JS. The m(6)A reader YTHDF1 facilitates the tumorigenesis and metastasis of gastric cancer via USP14 translation in an m(6)A-dependent manner. Front Cell Dev Biol. 2021;9:647702.CrossRefPubMedPubMedCentral
35.
go back to reference Wang H, Luo Q, Kang J, Wei Q, Yang Y, Yang D, Liu X, Liu T, Yi P. YTHDF1 aggravates the progression of cervical cancer through m(6)A-mediated up-regulation of RANBP2. Front Oncol. 2021;11:650383.CrossRefPubMedPubMedCentral Wang H, Luo Q, Kang J, Wei Q, Yang Y, Yang D, Liu X, Liu T, Yi P. YTHDF1 aggravates the progression of cervical cancer through m(6)A-mediated up-regulation of RANBP2. Front Oncol. 2021;11:650383.CrossRefPubMedPubMedCentral
37.
go back to reference Li W, Chen G, Feng Z, Zhu B, Zhou L, Zhang Y, Mai J, Jiang C, Zeng J. YTHDF1 promotes the proliferation, migration, and invasion of prostate cancer cells by regulating TRIM44. Genes & genomics. 2021;43(12):1413–21.CrossRef Li W, Chen G, Feng Z, Zhu B, Zhou L, Zhang Y, Mai J, Jiang C, Zeng J. YTHDF1 promotes the proliferation, migration, and invasion of prostate cancer cells by regulating TRIM44. Genes & genomics. 2021;43(12):1413–21.CrossRef
38.
go back to reference Li P, Shi Y, Gao D, Xu H, Zou Y, Wang Z, Li W. ELK1-mediated YTHDF1 drives prostate cancer progression by facilitating the translation of Polo-like kinase 1 in an m6A dependent manner. Int J Biol Sci. 2022;18(16):6145–62.CrossRefPubMedPubMedCentral Li P, Shi Y, Gao D, Xu H, Zou Y, Wang Z, Li W. ELK1-mediated YTHDF1 drives prostate cancer progression by facilitating the translation of Polo-like kinase 1 in an m6A dependent manner. Int J Biol Sci. 2022;18(16):6145–62.CrossRefPubMedPubMedCentral
39.
go back to reference Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, et al. The tripartite motif family identifies cell compartments. EMBO J. 2001;20(9):2140–51.CrossRefPubMedPubMedCentral Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, et al. The tripartite motif family identifies cell compartments. EMBO J. 2001;20(9):2140–51.CrossRefPubMedPubMedCentral
40.
go back to reference Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N, Nonomura K, Hatakeyama S. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Can Res. 2008;68(9):3486–94.CrossRef Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N, Nonomura K, Hatakeyama S. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Can Res. 2008;68(9):3486–94.CrossRef
Metadata
Title
RNA N6-methyladenosine-modified-binding protein YTHDF1 promotes prostate cancer progression by regulating androgen function-related gene TRIM68
Authors
Qihong Nie
Xiaoyuan Wu
Yongming Huang
Tao Guo
Jin Kuang
Chuance Du
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01533-5

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue