Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Prostate Cancer | Primary research

LINC01006 facilitates cell proliferation, migration and invasion in prostate cancer through targeting miR-34a-5p to up-regulate DAAM1

Authors: Enhui Ma, Qianqian Wang, Jinhua Li, Xinqi Zhang, Zhenjia Guo, Xiaofeng Yang

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet.

Methods

RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified.

Results

LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression.

Conclusions

LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Armstrong AJ. Updates in advanced prostate cancer 2018. Prostate Cancer Prost Dis. 2018;21(4):449–50.CrossRef Armstrong AJ. Updates in advanced prostate cancer 2018. Prostate Cancer Prost Dis. 2018;21(4):449–50.CrossRef
2.
3.
go back to reference Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17–18):1105–40.CrossRef Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17–18):1105–40.CrossRef
4.
go back to reference Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 2019;44(1):33–52.CrossRef Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 2019;44(1):33–52.CrossRef
5.
go back to reference Wang J, Su Z, Lu S, Fu W, Liu Z, Jiang X, Tai S. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin Chim Acta. 2018;485:229–33.CrossRef Wang J, Su Z, Lu S, Fu W, Liu Z, Jiang X, Tai S. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin Chim Acta. 2018;485:229–33.CrossRef
6.
go back to reference Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Can Res. 2017;77(15):3965–81.CrossRef Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Can Res. 2017;77(15):3965–81.CrossRef
7.
go back to reference Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y, Jiang X. LncRNA-ATB: An indispensable cancer-related long noncoding RNA. Cell Prolif. 2017;50:6. Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y, Jiang X. LncRNA-ATB: An indispensable cancer-related long noncoding RNA. Cell Prolif. 2017;50:6.
8.
go back to reference Hua X, Liu Z, Zhou M, Tian Y, Zhao PP, Pan WH, Li CX, Huang XX, Liao ZX, Xian Q, et al. LSAMP-AS1 binds to microRNA-183-5p to suppress the progression of prostate cancer by up-regulating the tumor suppressor DCN. EBioMedicine. 2019;50:178–90.CrossRef Hua X, Liu Z, Zhou M, Tian Y, Zhao PP, Pan WH, Li CX, Huang XX, Liao ZX, Xian Q, et al. LSAMP-AS1 binds to microRNA-183-5p to suppress the progression of prostate cancer by up-regulating the tumor suppressor DCN. EBioMedicine. 2019;50:178–90.CrossRef
10.
go back to reference Cao Y, Xiong JB, Zhang GY, Liu Y, Jie ZG, Li ZR. Long noncoding RNA UCA1 regulates PRL-3 expression by sponging microRNA-495 to promote the progression of gastric cancer. Mol Ther Nucleic Acids. 2019;19:853–64.CrossRef Cao Y, Xiong JB, Zhang GY, Liu Y, Jie ZG, Li ZR. Long noncoding RNA UCA1 regulates PRL-3 expression by sponging microRNA-495 to promote the progression of gastric cancer. Mol Ther Nucleic Acids. 2019;19:853–64.CrossRef
11.
go back to reference Zhu X, Chen F, Shao Y, Xu D, Guo J. Long intergenic non-protein coding RNA 1006 used as a potential novel biomarker of gastric cancer. Cancer Biomarkers. 2017;21(1):73–80.CrossRef Zhu X, Chen F, Shao Y, Xu D, Guo J. Long intergenic non-protein coding RNA 1006 used as a potential novel biomarker of gastric cancer. Cancer Biomarkers. 2017;21(1):73–80.CrossRef
12.
go back to reference Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 2019;27(3):518–30.CrossRef Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 2019;27(3):518–30.CrossRef
13.
go back to reference Miotto M, Marinari E, De Martino A. Competing endogenous RNA crosstalk at system level. PLoS Comput Biol. 2019;15(11):e1007474.CrossRef Miotto M, Marinari E, De Martino A. Competing endogenous RNA crosstalk at system level. PLoS Comput Biol. 2019;15(11):e1007474.CrossRef
14.
go back to reference Li F, Hu Q, Pang Z, Xu X. LncRNA MAGI2-AS3 upregulates cytokine signaling 1 by sponging miR-155 in non-small cell lung cancer. Cancer Biother Radiopharm. 2020;35(1):72–6.CrossRef Li F, Hu Q, Pang Z, Xu X. LncRNA MAGI2-AS3 upregulates cytokine signaling 1 by sponging miR-155 in non-small cell lung cancer. Cancer Biother Radiopharm. 2020;35(1):72–6.CrossRef
15.
go back to reference Liu X, Li Y, Wen J, Qi T, Wang Y. Long non-coding RNA TTN-AS1 promotes tumorigenesis of ovarian cancer through modulating the miR-139–5p/ROCK2 axis. Biomed Pharmacother. 2020;125:109882.CrossRef Liu X, Li Y, Wen J, Qi T, Wang Y. Long non-coding RNA TTN-AS1 promotes tumorigenesis of ovarian cancer through modulating the miR-139–5p/ROCK2 axis. Biomed Pharmacother. 2020;125:109882.CrossRef
16.
go back to reference Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63.CrossRef Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63.CrossRef
17.
go back to reference Zhou Y, Chen S, Cheng S, Wei Q, Fathy AH, Shan T. The prognostic value of high LncRNA AFAP1-AS1 expression in various cancers: A systematic review and meta-analysis containing 21 studies. Clin Chim Acta. 2018;481:147–53.CrossRef Zhou Y, Chen S, Cheng S, Wei Q, Fathy AH, Shan T. The prognostic value of high LncRNA AFAP1-AS1 expression in various cancers: A systematic review and meta-analysis containing 21 studies. Clin Chim Acta. 2018;481:147–53.CrossRef
18.
go back to reference Lu R, Chen J, Kong L, Zhu H. Prognostic value of lncRNA ROR expression in various cancers: a meta-analysis. Biosci Rep. 2018;38:5. Lu R, Chen J, Kong L, Zhu H. Prognostic value of lncRNA ROR expression in various cancers: a meta-analysis. Biosci Rep. 2018;38:5.
20.
go back to reference Qiu C, Li S, Sun D, Yang S. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop. Oncol Lett. 2020;19(2):1267–72.PubMed Qiu C, Li S, Sun D, Yang S. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop. Oncol Lett. 2020;19(2):1267–72.PubMed
22.
go back to reference Zhang L, Wang Y, Zhang L, You G, Li C, Meng B, Zhou M, Zhang M. LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis. Cancer Cell Int. 2019;19:320.CrossRef Zhang L, Wang Y, Zhang L, You G, Li C, Meng B, Zhou M, Zhang M. LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis. Cancer Cell Int. 2019;19:320.CrossRef
23.
go back to reference Gao C, Li H, Zhuang J, Zhang H, Wang K, Yang J, Liu C, Liu L, Zhou C, Sun C. The construction and analysis of ceRNA networks in invasive breast cancer: a study based on The Cancer Genome Atlas. Cancer Manag Res. 2019;11:1–11.CrossRef Gao C, Li H, Zhuang J, Zhang H, Wang K, Yang J, Liu C, Liu L, Zhou C, Sun C. The construction and analysis of ceRNA networks in invasive breast cancer: a study based on The Cancer Genome Atlas. Cancer Manag Res. 2019;11:1–11.CrossRef
24.
go back to reference Zhang R, Wang J, Jia E, Zhang J, Liu N, Chi C. lncRNA BCAR4 sponges miR3703p to promote bladder cancer progression via Wnt signaling. Int J Mol Med. 2020;45(2):578–88.PubMed Zhang R, Wang J, Jia E, Zhang J, Liu N, Chi C. lncRNA BCAR4 sponges miR3703p to promote bladder cancer progression via Wnt signaling. Int J Mol Med. 2020;45(2):578–88.PubMed
26.
go back to reference Gao Y, Yang M, Wei L, Liang X, Wu F, Huang Y, Yang T. miR-34a-5p inhibits cell proliferation, migration and invasion through targeting JAG1/Notch1 pathway in HPV-infected human epidermal keratinocytes. Pathology Oncology Research: POR; 2019. Gao Y, Yang M, Wei L, Liang X, Wu F, Huang Y, Yang T. miR-34a-5p inhibits cell proliferation, migration and invasion through targeting JAG1/Notch1 pathway in HPV-infected human epidermal keratinocytes. Pathology Oncology Research: POR; 2019.
27.
go back to reference Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRef Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRef
28.
go back to reference Agarwal V, Bell GW. Nam JW. Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife; 2015. p. 4. Agarwal V, Bell GW. Nam JW. Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife; 2015. p. 4.
29.
go back to reference Mei J, Huang Y, Hao L, Liu Y, Yan T, Qiu T, Xu R, Xu B, Xiao Z, Jiang X, et al. DAAM1-mediated migration and invasion of ovarian cancer cells are suppressed by miR-208a-5p. Pathol Res Pract. 2019;215(7):152452.CrossRef Mei J, Huang Y, Hao L, Liu Y, Yan T, Qiu T, Xu R, Xu B, Xiao Z, Jiang X, et al. DAAM1-mediated migration and invasion of ovarian cancer cells are suppressed by miR-208a-5p. Pathol Res Pract. 2019;215(7):152452.CrossRef
Metadata
Title
LINC01006 facilitates cell proliferation, migration and invasion in prostate cancer through targeting miR-34a-5p to up-regulate DAAM1
Authors
Enhui Ma
Qianqian Wang
Jinhua Li
Xinqi Zhang
Zhenjia Guo
Xiaofeng Yang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01577-1

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine