Skip to main content
Top
Published in: Strahlentherapie und Onkologie 10/2020

01-10-2020 | Prostate Cancer | Review Article

The role of radiomics in prostate cancer radiotherapy

Authors: Rodrigo Delgadillo, John C. Ford, Matthew C. Abramowitz, Alan Dal Pra, Alan Pollack, Radka Stoyanova

Published in: Strahlentherapie und Onkologie | Issue 10/2020

Login to get access

Abstract

“Radiomics,” as it refers to the extraction and analysis of a large number of advanced quantitative radiological features from medical images using high-throughput methods, is perfectly suited as an engine for effectively sifting through the multiple series of prostate images from before, during, and after radiotherapy (RT). Multiparametric (mp)MRI, planning CT, and cone beam CT (CBCT) routinely acquired throughout RT and the radiomics pipeline are developed for extraction of thousands of variables. Radiomics data are in a format that is appropriate for building descriptive and predictive models relating image features to diagnostic, prognostic, or predictive information. Prediction of Gleason score, the histopathologic cancer grade, has been the mainstay of the radiomic efforts in prostate cancer. While Gleason score (GS) is still the best predictor of treatment outcome, there are other novel applications of quantitative imaging that are tailored to RT. In this review, we summarize the radiomics efforts and discuss several promising concepts such as delta-radiomics and radiogenomics for utilizing image features for assessment of the aggressiveness of prostate cancer and its outcome. We also discuss opportunities for quantitative imaging with the advance of instrumentation in MRI-guided therapies.
Literature
1.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577CrossRefPubMed
2.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedCrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedCrossRef
3.
go back to reference Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822PubMedCrossRef Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822PubMedCrossRef
4.
go back to reference Futterer JJ, Briganti A, De Visschere P et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68(6):1045–1053PubMedCrossRef Futterer JJ, Briganti A, De Visschere P et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68(6):1045–1053PubMedCrossRef
5.
go back to reference Israel B, Leest MV, Sedelaar M, Padhani AR, Zamecnik P, Barentsz JO (2020) Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 2: interpretation. Eur Urol 77(4):469–480PubMedCrossRef Israel B, Leest MV, Sedelaar M, Padhani AR, Zamecnik P, Barentsz JO (2020) Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 2: interpretation. Eur Urol 77(4):469–480PubMedCrossRef
7.
go back to reference Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging—Reporting and data system: 2015, version 2. Eur Urol 69(1):16–40CrossRefPubMed Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging—Reporting and data system: 2015, version 2. Eur Urol 69(1):16–40CrossRefPubMed
8.
go back to reference Turkbey B, Rosenkrantz AB, Haider MA et al (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76(3):340–351PubMedCrossRef Turkbey B, Rosenkrantz AB, Haider MA et al (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76(3):340–351PubMedCrossRef
9.
go back to reference Stabile A, Giganti F, Kasivisvanathan V et al (2020) Factors influencing variability in the performance of multiparametric magnetic resonance imaging in detecting clinically significant prostate cancer: a systematic literature review. Eur Urol Oncol 3(2):145–167PubMedCrossRefPubMedCentral Stabile A, Giganti F, Kasivisvanathan V et al (2020) Factors influencing variability in the performance of multiparametric magnetic resonance imaging in detecting clinically significant prostate cancer: a systematic literature review. Eur Urol Oncol 3(2):145–167PubMedCrossRefPubMedCentral
11.
go back to reference Osman SOS, Leijenaar RTH, Cole AJ et al (2019) Computed tomography-based radiomics for risk stratification in prostate cancer. Int J Radiat Oncol Biol Phys 105(2):448–456PubMedCrossRef Osman SOS, Leijenaar RTH, Cole AJ et al (2019) Computed tomography-based radiomics for risk stratification in prostate cancer. Int J Radiat Oncol Biol Phys 105(2):448–456PubMedCrossRef
12.
go back to reference Tanadini-Lang S, Bogowicz M, Veit-Haibach P et al (2018) Exploratory radiomics in computed tomography perfusion of prostate cancer. Anticancer Res 38(2):685–690PubMed Tanadini-Lang S, Bogowicz M, Veit-Haibach P et al (2018) Exploratory radiomics in computed tomography perfusion of prostate cancer. Anticancer Res 38(2):685–690PubMed
13.
go back to reference Fave X, Zhang L, Yang J et al (2016) Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res 5(4):349–363CrossRef Fave X, Zhang L, Yang J et al (2016) Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res 5(4):349–363CrossRef
14.
go back to reference van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2017) Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol 123(3):363–369PubMedCrossRef van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2017) Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol 123(3):363–369PubMedCrossRef
15.
go back to reference Qin Q, Shi A, Zhang R et al (2020) Cone-beam CT radiomics features might improve the prediction of lung toxicity after SBRT in stage I NSCLC patients. Thorac Cancer 11(4):964–972PubMedPubMedCentralCrossRef Qin Q, Shi A, Zhang R et al (2020) Cone-beam CT radiomics features might improve the prediction of lung toxicity after SBRT in stage I NSCLC patients. Thorac Cancer 11(4):964–972PubMedPubMedCentralCrossRef
16.
go back to reference Jones KM, Michel KA, Bankson JA, Fuller CD, Klopp AH, Venkatesan AM (2018) Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment. Int J Radiat Oncol Biol Phys 101(5):1046–1056PubMedCrossRef Jones KM, Michel KA, Bankson JA, Fuller CD, Klopp AH, Venkatesan AM (2018) Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment. Int J Radiat Oncol Biol Phys 101(5):1046–1056PubMedCrossRef
17.
18.
go back to reference Vargas HA, Akin O, Franiel T et al (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784PubMedPubMedCentralCrossRef Vargas HA, Akin O, Franiel T et al (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784PubMedPubMedCentralCrossRef
19.
go back to reference Somford DM, Hoeks CM, Hulsbergen-van de Kaa CA et al (2013) Evaluation of diffusion-weighted MR imaging at inclusion in an active surveillance protocol for low-risk prostate cancer. Invest Radiol 48(3:152–157CrossRef Somford DM, Hoeks CM, Hulsbergen-van de Kaa CA et al (2013) Evaluation of diffusion-weighted MR imaging at inclusion in an active surveillance protocol for low-risk prostate cancer. Invest Radiol 48(3:152–157CrossRef
20.
go back to reference Peng Y, Jiang Y, Yang C et al (2013) Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study. Radiology 267(3):787–796PubMedCrossRef Peng Y, Jiang Y, Yang C et al (2013) Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study. Radiology 267(3):787–796PubMedCrossRef
21.
go back to reference Hegde JV, Mulkern RV, Panych LP et al (2013) Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37(5):1035–1054PubMedPubMedCentralCrossRef Hegde JV, Mulkern RV, Panych LP et al (2013) Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37(5):1035–1054PubMedPubMedCentralCrossRef
22.
go back to reference Isebaert S, Van den Bergh L, Haustermans K et al (2013) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 37(6):1392–1401PubMedCrossRef Isebaert S, Van den Bergh L, Haustermans K et al (2013) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 37(6):1392–1401PubMedCrossRef
24.
go back to reference von Eyben FE, Kiljunen T, Kangasmaki A, Kairemo K, von Eyben R, Joensuu T (2016) Radiotherapy boost for the dominant Intraprostatic cancer lesion—A systematic review and meta-analysis. Clin Genitourin Cancer 14(3):189–197CrossRef von Eyben FE, Kiljunen T, Kangasmaki A, Kairemo K, von Eyben R, Joensuu T (2016) Radiotherapy boost for the dominant Intraprostatic cancer lesion—A systematic review and meta-analysis. Clin Genitourin Cancer 14(3):189–197CrossRef
25.
go back to reference Bauman G, Haider M, Van der Heide UA, Menard C (2013) Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol 107(3):274–281PubMedCrossRef Bauman G, Haider M, Van der Heide UA, Menard C (2013) Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol 107(3):274–281PubMedCrossRef
26.
go back to reference Monninkhof EM, van Loon JWL, van Vulpen M et al (2018) Standard whole prostate gland radiotherapy with and without lesion boost in prostate cancer: toxicity in the FLAME randomized controlled trial. Radiother Oncol 127(1):74–80PubMedCrossRef Monninkhof EM, van Loon JWL, van Vulpen M et al (2018) Standard whole prostate gland radiotherapy with and without lesion boost in prostate cancer: toxicity in the FLAME randomized controlled trial. Radiother Oncol 127(1):74–80PubMedCrossRef
27.
go back to reference Wolters T, Montironi R, Mazzucchelli R et al (2012) Comparison of incidentally detected prostate cancer with screen-detected prostate cancer treated by prostatectomy. Prostate 72(1):108–115PubMedCrossRef Wolters T, Montironi R, Mazzucchelli R et al (2012) Comparison of incidentally detected prostate cancer with screen-detected prostate cancer treated by prostatectomy. Prostate 72(1):108–115PubMedCrossRef
28.
go back to reference Wolters T, Roobol MJ, van Leeuwen PJ et al (2010) Should pathologists routinely report prostate tumour volume? The prognostic value of tumour volume in prostate cancer. Eur Urol 57(5):821–829PubMedCrossRef Wolters T, Roobol MJ, van Leeuwen PJ et al (2010) Should pathologists routinely report prostate tumour volume? The prognostic value of tumour volume in prostate cancer. Eur Urol 57(5):821–829PubMedCrossRef
29.
go back to reference Klotz L (2013) Active surveillance for prostate cancer: overview and update. Curr Treat Options Oncol 14(1):97–108PubMedCrossRef Klotz L (2013) Active surveillance for prostate cancer: overview and update. Curr Treat Options Oncol 14(1):97–108PubMedCrossRef
31.
go back to reference Stoyanova R, Takhar M, Tschudi Y et al (2016) Prostate cancer radiomics and the promise of radiogenomics. Transl Cancer Res 5(4):432–447PubMedCrossRef Stoyanova R, Takhar M, Tschudi Y et al (2016) Prostate cancer radiomics and the promise of radiogenomics. Transl Cancer Res 5(4):432–447PubMedCrossRef
32.
go back to reference Stoyanova R, Pollack A, Takhar M et al (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 7(33):53362–53376PubMedPubMedCentralCrossRef Stoyanova R, Pollack A, Takhar M et al (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 7(33):53362–53376PubMedPubMedCentralCrossRef
33.
go back to reference Stoyanova R, Chinea F, Kwon D et al (2018) An automated multiparametric MRI quantitative imaging prostate habitat risk scoring system for defining external beam radiation therapy boost volumes. Int J Radiat Oncol Biol Phys 102(4):821–829PubMedPubMedCentralCrossRef Stoyanova R, Chinea F, Kwon D et al (2018) An automated multiparametric MRI quantitative imaging prostate habitat risk scoring system for defining external beam radiation therapy boost volumes. Int J Radiat Oncol Biol Phys 102(4):821–829PubMedPubMedCentralCrossRef
34.
35.
go back to reference Parra NA, Pollack A, Chinea FM et al (2017) Automatic detection and quantitative DCE-MRI scoring of prostate cancer aggressiveness. Front Oncol 7:259PubMedPubMedCentralCrossRef Parra NA, Pollack A, Chinea FM et al (2017) Automatic detection and quantitative DCE-MRI scoring of prostate cancer aggressiveness. Front Oncol 7:259PubMedPubMedCentralCrossRef
37.
go back to reference Jonsson JH, Karlsson MG, Karlsson M, Nyholm T (2010) Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol 5(1):62PubMedPubMedCentralCrossRef Jonsson JH, Karlsson MG, Karlsson M, Nyholm T (2010) Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol 5(1):62PubMedPubMedCentralCrossRef
38.
go back to reference Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43(1):57–66CrossRefPubMed Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43(1):57–66CrossRefPubMed
39.
go back to reference Siversson C, Nordström F, Nilsson T et al (2015) Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm. Med Phys 42(10):6090–6097PubMedCrossRef Siversson C, Nordström F, Nilsson T et al (2015) Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm. Med Phys 42(10):6090–6097PubMedCrossRef
40.
go back to reference Liu Y, Lei Y, Wang Y et al (2019) Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning. Phys Med Biol 64(20):205022PubMedCrossRefPubMedCentral Liu Y, Lei Y, Wang Y et al (2019) Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning. Phys Med Biol 64(20):205022PubMedCrossRefPubMedCentral
41.
go back to reference Shafiq-Ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018) Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep 8(1):10545PubMedPubMedCentralCrossRef Shafiq-Ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018) Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep 8(1):10545PubMedPubMedCentralCrossRef
42.
go back to reference Yang F, Ford JC, Dogan N et al (2018) Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol 7(3):445–458PubMedPubMedCentralCrossRef Yang F, Ford JC, Dogan N et al (2018) Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol 7(3):445–458PubMedPubMedCentralCrossRef
43.
go back to reference Padgett KR, Swallen A, Pirozzi S et al (2018) Towards a universal MRI atlas of the prostate and prostate zones: comparison of MRI vendor and image acquisition parameters. Strahlenther Onkol 195(2):121–130PubMedPubMedCentralCrossRef Padgett KR, Swallen A, Pirozzi S et al (2018) Towards a universal MRI atlas of the prostate and prostate zones: comparison of MRI vendor and image acquisition parameters. Strahlenther Onkol 195(2):121–130PubMedPubMedCentralCrossRef
45.
go back to reference Mecke KR (2000) Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics. Springer, Berlin, Heidelberg, New York Mecke KR (2000) Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics. Springer, Berlin, Heidelberg, New York
46.
go back to reference Johnson P, Young L, Lamichhane N, Patel V, Chinea F, Yang F (2017) Quantitative imaging: correlating image features with the segmentation accuracy of PET based tumor contours in the lung. Radiother Oncol 123(2):257–262PubMedCrossRef Johnson P, Young L, Lamichhane N, Patel V, Chinea F, Yang F (2017) Quantitative imaging: correlating image features with the segmentation accuracy of PET based tumor contours in the lung. Radiother Oncol 123(2):257–262PubMedCrossRef
47.
go back to reference Li BL (2002) Fractal dimensions. Wiley Online Library Li BL (2002) Fractal dimensions. Wiley Online Library
48.
go back to reference Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19(5):1264–1274CrossRef Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19(5):1264–1274CrossRef
49.
go back to reference Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804CrossRef Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804CrossRef
50.
go back to reference Loh H, Leu J, Luo RC (1988) The analysis of natural textures using run length features. IEEE Trans Ind Electron 35(2):323–328CrossRef Loh H, Leu J, Luo RC (1988) The analysis of natural textures using run length features. IEEE Trans Ind Electron 35(2):323–328CrossRef
51.
go back to reference Thibault G, Fertil B, Navarro C et al (2009) Texture indexes and gray level size zone matrix: application to cell nuclei classification. Pattern Recognition and Information Processing. Thibault G, Fertil B, Navarro C et al (2009) Texture indexes and gray level size zone matrix: application to cell nuclei classification. Pattern Recognition and Information Processing.
52.
go back to reference Bigun J (1994) Speed, frequency, and orientation tuned 3-d gabor filter banks and their design. In: Proceedings of the 12th IAPR International Conference Pattern Recognition. Conference C: Signal Processing, vol 3: 184–187 Bigun J (1994) Speed, frequency, and orientation tuned 3-d gabor filter banks and their design. In: Proceedings of the 12th IAPR International Conference Pattern Recognition. Conference C: Signal Processing, vol 3: 184–187
53.
go back to reference Ganeshan B, Miles KA, Young RC, Chatwin CR (2008) Three-dimensional selective-scale texture analysis of computed tomography pulmonary angiograms. Invest Radiol 43(6):382–394PubMedCrossRef Ganeshan B, Miles KA, Young RC, Chatwin CR (2008) Three-dimensional selective-scale texture analysis of computed tomography pulmonary angiograms. Invest Radiol 43(6):382–394PubMedCrossRef
54.
go back to reference Mallat S (1999) A wavelet tour of signal processing. Academic Press, Cambridge Mallat S (1999) A wavelet tour of signal processing. Academic Press, Cambridge
55.
go back to reference Varghese B, Chen F, Hwang D et al (2019) Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep 9(1):1570PubMedPubMedCentralCrossRef Varghese B, Chen F, Hwang D et al (2019) Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep 9(1):1570PubMedPubMedCentralCrossRef
56.
go back to reference Cuocolo R, Stanzione A, Ponsiglione A et al (2019) Clinically significant prostate cancer detection on MRI: a radiomic shape features study. Eur J Radiol 116:144–149PubMedCrossRef Cuocolo R, Stanzione A, Ponsiglione A et al (2019) Clinically significant prostate cancer detection on MRI: a radiomic shape features study. Eur J Radiol 116:144–149PubMedCrossRef
57.
go back to reference Algohary A, Viswanath S, Shiradkar R et al (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 48(3):818–828CrossRef Algohary A, Viswanath S, Shiradkar R et al (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 48(3):818–828CrossRef
58.
go back to reference Shiradkar R, Ghose S, Jambor I et al (2018) Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings. J Magn Reson Imaging 48(6):1626–1636PubMedPubMedCentralCrossRef Shiradkar R, Ghose S, Jambor I et al (2018) Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings. J Magn Reson Imaging 48(6):1626–1636PubMedPubMedCentralCrossRef
59.
go back to reference Bourbonne V, Fournier G, Vallières M et al (2020) External validation of an MRI-derived radiomics model to predict biochemical recurrence after surgery for high-risk prostate cancer. Cancers 12(4):814PubMedCentralCrossRef Bourbonne V, Fournier G, Vallières M et al (2020) External validation of an MRI-derived radiomics model to predict biochemical recurrence after surgery for high-risk prostate cancer. Cancers 12(4):814PubMedCentralCrossRef
60.
go back to reference van der Leest M, Israel B, Cornel EB et al (2019) High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naive men: the next step in magnetic resonance imaging accessibility. Eur Urol 76(5):574–581PubMedCrossRef van der Leest M, Israel B, Cornel EB et al (2019) High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naive men: the next step in magnetic resonance imaging accessibility. Eur Urol 76(5):574–581PubMedCrossRef
61.
go back to reference Abdollahi H, Mofid B, Shiri I et al (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med 124(6):555–567PubMedCrossRef Abdollahi H, Mofid B, Shiri I et al (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med 124(6):555–567PubMedCrossRef
62.
go back to reference Pollack A, Chinea FM, Bossart E et al (2020) Phase I trial of MRI-guided prostate cancer lattice extreme ablative dose (LEAD) boost radiation therapy. Int J Radiat Oncol Biol Phys 107(2):305–315PubMedCrossRefPubMedCentral Pollack A, Chinea FM, Bossart E et al (2020) Phase I trial of MRI-guided prostate cancer lattice extreme ablative dose (LEAD) boost radiation therapy. Int J Radiat Oncol Biol Phys 107(2):305–315PubMedCrossRefPubMedCentral
63.
go back to reference Chindasombatjaroen J, Kakimoto N, Murakami S, Maeda Y, Furukawa S (2011) Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 27(2):114–120CrossRef Chindasombatjaroen J, Kakimoto N, Murakami S, Maeda Y, Furukawa S (2011) Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 27(2):114–120CrossRef
64.
go back to reference Lechuga L, Weidlich GA (2016) Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus 8(9):e778–e778PubMedPubMedCentral Lechuga L, Weidlich GA (2016) Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus 8(9):e778–e778PubMedPubMedCentral
66.
go back to reference Nardi C, Borri C, Regini F et al (2015) Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study. Radiol Med 120(7):618–626PubMedCrossRef Nardi C, Borri C, Regini F et al (2015) Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study. Radiol Med 120(7):618–626PubMedCrossRef
67.
go back to reference Bagher-Ebadian H, Siddiqui F, Liu C, Movsas B, Chetty IJ (2017) On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys 44(5):1755–1770CrossRefPubMed Bagher-Ebadian H, Siddiqui F, Liu C, Movsas B, Chetty IJ (2017) On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys 44(5):1755–1770CrossRefPubMed
68.
go back to reference Fave X, Mackin D, Yang J et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42(12):6784–6797PubMedPubMedCentralCrossRef Fave X, Mackin D, Yang J et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42(12):6784–6797PubMedPubMedCentralCrossRef
69.
go back to reference Hall WA, Paulson ES, van der Heide UA et al (2019) The transformation of radiation oncology using real-time magnetic resonance guidance: a review. Eur J Cancer 122:42–52PubMedCrossRefPubMedCentral Hall WA, Paulson ES, van der Heide UA et al (2019) The transformation of radiation oncology using real-time magnetic resonance guidance: a review. Eur J Cancer 122:42–52PubMedCrossRefPubMedCentral
70.
go back to reference Pathmanathan AU, van As NJ, Kerkmeijer LGW et al (2018) Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment? Int J Radiat Oncol Biol Phys 100(2):361–373PubMedCrossRef Pathmanathan AU, van As NJ, Kerkmeijer LGW et al (2018) Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment? Int J Radiat Oncol Biol Phys 100(2):361–373PubMedCrossRef
71.
go back to reference Boldrini L, Cusumano D, Chiloiro G et al (2018) Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med 124(2):145–153PubMedPubMedCentralCrossRef Boldrini L, Cusumano D, Chiloiro G et al (2018) Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med 124(2):145–153PubMedPubMedCentralCrossRef
73.
go back to reference Renard-Penna R, Cancel-Tassin G, Comperat E et al (2015) Multiparametric magnetic resonance imaging predicts postoperative pathology but misses aggressive prostate cancers as assessed by cell cycle progression score. J Urol 194(6):1617–1623PubMedCrossRef Renard-Penna R, Cancel-Tassin G, Comperat E et al (2015) Multiparametric magnetic resonance imaging predicts postoperative pathology but misses aggressive prostate cancers as assessed by cell cycle progression score. J Urol 194(6):1617–1623PubMedCrossRef
74.
go back to reference Varlotto J, Stevenson MA (2005) Anemia, tumor hypoxemia, and the cancer patient. Int J Radiat Oncol Biol Phys 63(1):25–36PubMedCrossRef Varlotto J, Stevenson MA (2005) Anemia, tumor hypoxemia, and the cancer patient. Int J Radiat Oncol Biol Phys 63(1):25–36PubMedCrossRef
75.
go back to reference Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8(3:180–192CrossRef Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8(3:180–192CrossRef
76.
go back to reference Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206PubMedCrossRef Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206PubMedCrossRef
77.
go back to reference Bache M, Kappler M, Said HM, Staab A, Vordermark D (2008) Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies. Curr Med Chem 15(4):322–338PubMedCrossRef Bache M, Kappler M, Said HM, Staab A, Vordermark D (2008) Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies. Curr Med Chem 15(4):322–338PubMedCrossRef
78.
go back to reference Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10):699–757PubMedCrossRef Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10):699–757PubMedCrossRef
79.
go back to reference Cho H, Ackerstaff E, Carlin S et al (2009) Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia 11(3):247–259PubMedPubMedCentralCrossRef Cho H, Ackerstaff E, Carlin S et al (2009) Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia 11(3):247–259PubMedPubMedCentralCrossRef
80.
go back to reference Stoyanova R, Huang K, Sandler K et al (2012) Mapping tumor hypoxia in vivo using pattern recognition of dynamic contrast-enhanced MRI data. Transl Oncol 5(6):437–447PubMedPubMedCentralCrossRef Stoyanova R, Huang K, Sandler K et al (2012) Mapping tumor hypoxia in vivo using pattern recognition of dynamic contrast-enhanced MRI data. Transl Oncol 5(6):437–447PubMedPubMedCentralCrossRef
81.
go back to reference Erho N, Crisan A, Vergara IA et al (2013) Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8(6):e66855PubMedPubMedCentralCrossRef Erho N, Crisan A, Vergara IA et al (2013) Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8(6):e66855PubMedPubMedCentralCrossRef
82.
go back to reference Den RB, Feng FY, Showalter TN et al (2014) Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys 89(5):1038–1046PubMedPubMedCentralCrossRef Den RB, Feng FY, Showalter TN et al (2014) Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys 89(5):1038–1046PubMedPubMedCentralCrossRef
83.
go back to reference Den RB, Yousefi K, Trabulsi EJ et al (2015) Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol 33(8):944–951PubMedPubMedCentralCrossRef Den RB, Yousefi K, Trabulsi EJ et al (2015) Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol 33(8):944–951PubMedPubMedCentralCrossRef
84.
go back to reference Klein EA, Yousefi K, Haddad Z et al (2015) A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol 67(4):778–786PubMedCrossRef Klein EA, Yousefi K, Haddad Z et al (2015) A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol 67(4):778–786PubMedCrossRef
85.
go back to reference Cuzick J, Berney DM, Fisher G et al (2012) Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 106(6):1095–1099PubMedPubMedCentralCrossRef Cuzick J, Berney DM, Fisher G et al (2012) Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 106(6):1095–1099PubMedPubMedCentralCrossRef
86.
go back to reference Freedland SJ, Gerber L, Reid J et al (2013) Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys 86(5):848–853PubMedPubMedCentralCrossRef Freedland SJ, Gerber L, Reid J et al (2013) Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys 86(5):848–853PubMedPubMedCentralCrossRef
87.
go back to reference Cooperberg MR, Simko JP, Cowan JE et al (2013) Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol 31(11):1428–1434PubMedCrossRef Cooperberg MR, Simko JP, Cowan JE et al (2013) Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol 31(11):1428–1434PubMedCrossRef
88.
go back to reference Crawford ED, Scholz MC, Kar AJ et al (2014) Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin 30(6):1025–1031PubMedCrossRef Crawford ED, Scholz MC, Kar AJ et al (2014) Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin 30(6):1025–1031PubMedCrossRef
89.
go back to reference Badani KK, Thompson DJ, Brown G et al (2015) Effect of a genomic classifier test on clinical practice decisions for patients with high-risk prostate cancer after surgery. BJU Int 115(3):419–429PubMedCrossRef Badani KK, Thompson DJ, Brown G et al (2015) Effect of a genomic classifier test on clinical practice decisions for patients with high-risk prostate cancer after surgery. BJU Int 115(3):419–429PubMedCrossRef
90.
go back to reference Klein EA, Cooperberg MR, Magi-Galluzzi C et al (2014) A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol 66(3):550–560PubMedCrossRef Klein EA, Cooperberg MR, Magi-Galluzzi C et al (2014) A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol 66(3):550–560PubMedCrossRef
91.
go back to reference Knezevic D, Goddard AD, Natraj N et al (2013) Analytical validation of the Oncotype DX prostate cancer assay—A clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 14:690PubMedPubMedCentralCrossRef Knezevic D, Goddard AD, Natraj N et al (2013) Analytical validation of the Oncotype DX prostate cancer assay—A clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 14:690PubMedPubMedCentralCrossRef
92.
go back to reference Cullen J, Rosner IL, Brand TC et al (2015) A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 68(1):123–131PubMedCrossRef Cullen J, Rosner IL, Brand TC et al (2015) A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 68(1):123–131PubMedCrossRef
93.
go back to reference Badani K, Kemeter M, Febbo PG et al (2015) The impact of a biopsy based 17-gene genomic prostate score on treatment recommendations in men with newly diagnosed clinically prostate cancer who are candidates for active surveillance. Urol Pract 2(4):181–189CrossRef Badani K, Kemeter M, Febbo PG et al (2015) The impact of a biopsy based 17-gene genomic prostate score on treatment recommendations in men with newly diagnosed clinically prostate cancer who are candidates for active surveillance. Urol Pract 2(4):181–189CrossRef
94.
go back to reference Hectors SJ, Cherny M, Yadav KK et al (2019) Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness. J Urol 202(3):498–505PubMedCrossRef Hectors SJ, Cherny M, Yadav KK et al (2019) Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness. J Urol 202(3):498–505PubMedCrossRef
95.
go back to reference Zhao SG, Chang SL, Spratt DE et al (2016) Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol 17(11):1612–1620PubMedCrossRef Zhao SG, Chang SL, Spratt DE et al (2016) Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol 17(11):1612–1620PubMedCrossRef
96.
go back to reference Woo S, Han S, Kim TH et al (2020) Prognostic value of pretreatment MRI in patients with prostate cancer treated with radiation therapy: a systematic review and meta-analysis. AJR Am J Roentgenol 214(3):597–604PubMedCrossRef Woo S, Han S, Kim TH et al (2020) Prognostic value of pretreatment MRI in patients with prostate cancer treated with radiation therapy: a systematic review and meta-analysis. AJR Am J Roentgenol 214(3):597–604PubMedCrossRef
97.
go back to reference Wibmer A, Hricak H, Gondo T et al (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850PubMedPubMedCentralCrossRef Wibmer A, Hricak H, Gondo T et al (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850PubMedPubMedCentralCrossRef
98.
go back to reference Vignati A, Mazzetti S, Giannini V et al (2015) Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol 60(7):2685–2701PubMedCrossRef Vignati A, Mazzetti S, Giannini V et al (2015) Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol 60(7):2685–2701PubMedCrossRef
99.
go back to reference Fehr D, Veeraraghavan H, Wibmer A et al (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci U S A 112(46):E6265–E6273PubMedPubMedCentralCrossRef Fehr D, Veeraraghavan H, Wibmer A et al (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci U S A 112(46):E6265–E6273PubMedPubMedCentralCrossRef
100.
go back to reference Chaddad A, Kucharczyk MJ, Niazi T (2018) Multimodal radiomic features for the predicting gleason score of prostate cancer. Cancers 10(8):249PubMedCentralCrossRef Chaddad A, Kucharczyk MJ, Niazi T (2018) Multimodal radiomic features for the predicting gleason score of prostate cancer. Cancers 10(8):249PubMedCentralCrossRef
101.
go back to reference Chen T, Li M, Gu Y et al (2019) Prostate cancer differentiation and aggressiveness: assessment with a Radiomic-based model vs. PI-RADS v2. J Magn Reson Imaging 49(3):875–884PubMedCrossRef Chen T, Li M, Gu Y et al (2019) Prostate cancer differentiation and aggressiveness: assessment with a Radiomic-based model vs. PI-RADS v2. J Magn Reson Imaging 49(3):875–884PubMedCrossRef
102.
go back to reference Min X, Li M, Dong D et al (2019) Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method. Eur J Radiol 115:16–21PubMedCrossRef Min X, Li M, Dong D et al (2019) Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method. Eur J Radiol 115:16–21PubMedCrossRef
105.
go back to reference Li M, Chen T, Zhao W et al (2020) Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI. Quant Imaging Med Surg 10(2):368–379PubMedPubMedCentralCrossRef Li M, Chen T, Zhao W et al (2020) Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI. Quant Imaging Med Surg 10(2):368–379PubMedPubMedCentralCrossRef
106.
go back to reference Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H, Yakar D (2020) Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol 30(3):1313–1324PubMedCrossRef Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H, Yakar D (2020) Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol 30(3):1313–1324PubMedCrossRef
107.
go back to reference Brunese L, Mercaldo F, Reginelli A, Santone A (2020) Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers. Magn Reson Imaging 66:165–175PubMedCrossRef Brunese L, Mercaldo F, Reginelli A, Santone A (2020) Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers. Magn Reson Imaging 66:165–175PubMedCrossRef
108.
go back to reference Tiwari P, Kurhanewicz J, Madabhushi A (2013) Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med Image Anal 17(2):219–235PubMedCrossRef Tiwari P, Kurhanewicz J, Madabhushi A (2013) Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med Image Anal 17(2):219–235PubMedCrossRef
109.
go back to reference Nketiah G, Elschot M, Kim E et al (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol 27(7):3050–3059PubMedCrossRef Nketiah G, Elschot M, Kim E et al (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol 27(7):3050–3059PubMedCrossRef
Metadata
Title
The role of radiomics in prostate cancer radiotherapy
Authors
Rodrigo Delgadillo
John C. Ford
Matthew C. Abramowitz
Alan Dal Pra
Alan Pollack
Radka Stoyanova
Publication date
01-10-2020
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 10/2020
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01679-9

Other articles of this Issue 10/2020

Strahlentherapie und Onkologie 10/2020 Go to the issue