Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Probiotics | Review

Microbiota medicine: towards clinical revolution

Authors: Prisca Gebrayel, Carole Nicco, Souhaila Al Khodor, Jaroslaw Bilinski, Elisabetta Caselli, Elena M. Comelli, Markus Egert, Cristina Giaroni, Tomasz M. Karpinski, Igor Loniewski, Agata Mulak, Julie Reygner, Paulina Samczuk, Matteo Serino, Mariusz Sikora, Annalisa Terranegra, Marcin Ufnal, Romain Villeger, Chantal Pichon, Peter Konturek, Marvin Edeas

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Literature
6.
go back to reference Anwar H, Iftikhar A, Muzaffar H, Almatroudi A, Allemailem KS, Navaid S, et al. Biodiversity of gut microbiota: impact of various host and environmental factors. Biomed Res Int. 2021;2021:1–9.CrossRef Anwar H, Iftikhar A, Muzaffar H, Almatroudi A, Allemailem KS, Navaid S, et al. Biodiversity of gut microbiota: impact of various host and environmental factors. Biomed Res Int. 2021;2021:1–9.CrossRef
7.
go back to reference Li Y, Xia S, Jiang X, Feng C, Gong S, Ma J, et al. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol. 2021;11(April):1–8. Li Y, Xia S, Jiang X, Feng C, Gong S, Ma J, et al. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol. 2021;11(April):1–8.
8.
go back to reference Bistoletti M, Caputi V, Baranzini N, Marchesi N, Filpa V, Marsilio I, et al. Antibiotic treatment-induced dysbiosis differently affects BDNF and TrkB expression in the brain and in the gut of juvenile mice. PLoS ONE. 2019;14(2):1–20.CrossRef Bistoletti M, Caputi V, Baranzini N, Marchesi N, Filpa V, Marsilio I, et al. Antibiotic treatment-induced dysbiosis differently affects BDNF and TrkB expression in the brain and in the gut of juvenile mice. PLoS ONE. 2019;14(2):1–20.CrossRef
9.
go back to reference Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20:6.CrossRef Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20:6.CrossRef
11.
go back to reference Salami M. Interplay of good bacteria and central nervous system: cognitive aspects and mechanistic considerations. Front Neurosci. 2021;11(15):25. Salami M. Interplay of good bacteria and central nervous system: cognitive aspects and mechanistic considerations. Front Neurosci. 2021;11(15):25.
12.
go back to reference Martin LJ, Adams RI, Bateman A, Bik HM, Hawks J, Hird SM, et al. Evolution of the indoor biome. Trends Ecol Evol. 2015;30(4):223–32.PubMedCrossRef Martin LJ, Adams RI, Bateman A, Bik HM, Hawks J, Hird SM, et al. Evolution of the indoor biome. Trends Ecol Evol. 2015;30(4):223–32.PubMedCrossRef
14.
go back to reference Stephens B. What have we learned about the microbiomes of indoor environments? mSystems. 2016;1(4):1–9.CrossRef Stephens B. What have we learned about the microbiomes of indoor environments? mSystems. 2016;1(4):1–9.CrossRef
15.
go back to reference Cardinale M, Kaiser D, Lueders T, Schnell S, Egert M. Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter Moraxella and Chryseobacterium species. Sci Reports. 2017;7(1):1–13. Cardinale M, Kaiser D, Lueders T, Schnell S, Egert M. Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter Moraxella and Chryseobacterium species. Sci Reports. 2017;7(1):1–13.
16.
go back to reference Hoisington AJ, Stearns-Yoder KA, Schuldt SJ, Beemer CJ, Maestre JP, Kinney KA, et al. Ten questions concerning the built environment and mental health. Build Environ. 2019;15(155):58–69.CrossRef Hoisington AJ, Stearns-Yoder KA, Schuldt SJ, Beemer CJ, Maestre JP, Kinney KA, et al. Ten questions concerning the built environment and mental health. Build Environ. 2019;15(155):58–69.CrossRef
18.
go back to reference Stamper CE, Hoisington AJ, Gomez OM, Halweg-Edwards AL, Smith DG, Bates KL, et al. The microbiome of the built environment and human behavior: implications for emotional health and well-being in postmodern western societies. Int Rev Neurobiol. 2016;1(131):289–323.CrossRef Stamper CE, Hoisington AJ, Gomez OM, Halweg-Edwards AL, Smith DG, Bates KL, et al. The microbiome of the built environment and human behavior: implications for emotional health and well-being in postmodern western societies. Int Rev Neurobiol. 2016;1(131):289–323.CrossRef
20.
go back to reference Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, et al. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Environ Epidemiol. 2019;30(2):219–35.PubMedPubMedCentralCrossRef Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, et al. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Environ Epidemiol. 2019;30(2):219–35.PubMedPubMedCentralCrossRef
21.
go back to reference Chen Y, Zhou J, Wang L. Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 2021;17(11):86. Chen Y, Zhou J, Wang L. Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 2021;17(11):86.
22.
go back to reference Dieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. Med Sci. 2018;6(4):116. Dieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. Med Sci. 2018;6(4):116.
25.
go back to reference Mervish N, Hu J, Hagan L, Arora M, Frau C, Choi J, et al. Associations of the oral microbiota with obesity and menarche in inner city girls. J Child Obes. 2019;4(1):217. Mervish N, Hu J, Hagan L, Arora M, Frau C, Choi J, et al. Associations of the oral microbiota with obesity and menarche in inner city girls. J Child Obes. 2019;4(1):217.
27.
go back to reference Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020;19(1):55–71.PubMedCrossRef Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020;19(1):55–71.PubMedCrossRef
28.
go back to reference Alshehri D, Saadah O, Mosli M, Edris S, Alhindi R, Bahieldin A. Dysbiosis of gut microbiota in inflammatory bowel disease: current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci. 2021;21(3):270.PubMedPubMedCentral Alshehri D, Saadah O, Mosli M, Edris S, Alhindi R, Bahieldin A. Dysbiosis of gut microbiota in inflammatory bowel disease: current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci. 2021;21(3):270.PubMedPubMedCentral
29.
go back to reference Shi XR, Chen BY, Lin WZ, Li YL, Wang YL, Liu Y, et al. Microbiota in gut, oral cavity, and mitral valves are associated with rheumatic heart disease. Front Cell Infect Microbiol. 2021;9(11):121. Shi XR, Chen BY, Lin WZ, Li YL, Wang YL, Liu Y, et al. Microbiota in gut, oral cavity, and mitral valves are associated with rheumatic heart disease. Front Cell Infect Microbiol. 2021;9(11):121.
30.
go back to reference Kato-Kogoe N, Sakaguchi S, Kamiya K, Omori M, Gu Y-H, Ito Y, et al. Characterization of salivary microbiota in patients with atherosclerotic cardiovascular disease: a case-control study. J Atheroscler Thromb. 2021;4:60608. Kato-Kogoe N, Sakaguchi S, Kamiya K, Omori M, Gu Y-H, Ito Y, et al. Characterization of salivary microbiota in patients with atherosclerotic cardiovascular disease: a case-control study. J Atheroscler Thromb. 2021;4:60608.
33.
go back to reference Yadav B, Prasad N, Saxena A. Gut microbiota dysbiosis and chronic kidney disease. J Ren Nutr Metab. 2020;6(3):70.CrossRef Yadav B, Prasad N, Saxena A. Gut microbiota dysbiosis and chronic kidney disease. J Ren Nutr Metab. 2020;6(3):70.CrossRef
34.
go back to reference Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32(6):921–31.PubMedCrossRef Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32(6):921–31.PubMedCrossRef
36.
go back to reference Sarkar A, Kuehl MN, Alman AC, Burkhardt BR. Linking the oral microbiome and salivary cytokine abundance to circadian oscillations. Sci Rep. 2021;11(1):1–13.CrossRef Sarkar A, Kuehl MN, Alman AC, Burkhardt BR. Linking the oral microbiome and salivary cytokine abundance to circadian oscillations. Sci Rep. 2021;11(1):1–13.CrossRef
39.
go back to reference Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24(22):2327.PubMedPubMedCentralCrossRef Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24(22):2327.PubMedPubMedCentralCrossRef
40.
go back to reference Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol. 2020;30(11):3100. Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol. 2020;30(11):3100.
41.
go back to reference Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020;12(6):1406.PubMedCentralCrossRef Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020;12(6):1406.PubMedCentralCrossRef
42.
go back to reference Ocáriz-Díez M, Cruellas M, Gascón M, Lastra R, Martínez-Lostao L, Ramírez-Labrada A, et al. Microbiota and lung cancer opportunities and challenges for improving immunotherapy efficacy. Front Oncol. 2020;10:1945.CrossRef Ocáriz-Díez M, Cruellas M, Gascón M, Lastra R, Martínez-Lostao L, Ramírez-Labrada A, et al. Microbiota and lung cancer opportunities and challenges for improving immunotherapy efficacy. Front Oncol. 2020;10:1945.CrossRef
43.
go back to reference Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol. 2019;61(Suppl 1):S43-50.PubMedPubMedCentralCrossRef Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol. 2019;61(Suppl 1):S43-50.PubMedPubMedCentralCrossRef
44.
go back to reference Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N, et al. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int J Mol Sci. 2019;20(18):4584.PubMedCentralCrossRef Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N, et al. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int J Mol Sci. 2019;20(18):4584.PubMedCentralCrossRef
47.
go back to reference Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–42.PubMedCrossRef Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–42.PubMedCrossRef
48.
go back to reference Gagnière J, Bonnin V, Jarrousse AS, Cardamone E, Agus A, Uhrhammer N, et al. Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin Sci. 2017;131(6):471–85.CrossRef Gagnière J, Bonnin V, Jarrousse AS, Cardamone E, Agus A, Uhrhammer N, et al. Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin Sci. 2017;131(6):471–85.CrossRef
50.
go back to reference Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the Human Gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20(4):859–67.PubMedCrossRef Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the Human Gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20(4):859–67.PubMedCrossRef
52.
go back to reference Karpiński TM. Role of oral microbiota in cancer development. Microorg. 2019;7(1):20.CrossRef Karpiński TM. Role of oral microbiota in cancer development. Microorg. 2019;7(1):20.CrossRef
53.
go back to reference Karpiński TM. The microbiota and pancreatic cancer. Gastroenterol Clin. 2019;48(3):447–64.CrossRef Karpiński TM. The microbiota and pancreatic cancer. Gastroenterol Clin. 2019;48(3):447–64.CrossRef
54.
go back to reference Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J (Engl). 2020;133(7):808.CrossRef Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J (Engl). 2020;133(7):808.CrossRef
55.
go back to reference Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep. 2016;6:8.CrossRef Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep. 2016;6:8.CrossRef
56.
go back to reference Tronnet S, Floch P, Lucarelli L, Gaillard D, Martin P, Serino M, et al. The genotoxin colibactin shapes gut microbiota in mice. Gut. 2020;8:9. Tronnet S, Floch P, Lucarelli L, Gaillard D, Martin P, Serino M, et al. The genotoxin colibactin shapes gut microbiota in mice. Gut. 2020;8:9.
57.
go back to reference Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:8.CrossRef Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:8.CrossRef
58.
go back to reference Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of gut dysbiosis on neurohormonal pathways in chronic kidney disease. Disease. 2019;7(1):21.CrossRef Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of gut dysbiosis on neurohormonal pathways in chronic kidney disease. Disease. 2019;7(1):21.CrossRef
60.
go back to reference Li FX, Wang MH, Wang JP, Li RS, Zhang YQ. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9(6):206.PubMedPubMedCentralCrossRef Li FX, Wang MH, Wang JP, Li RS, Zhang YQ. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9(6):206.PubMedPubMedCentralCrossRef
62.
go back to reference Durand PY, Nicco C, Serteyn D, Attaf D, Edeas M. Microbiota quality and mitochondrial activity link with occurrence of muscle cramps in hemodialysis patients using citrate dialysate: a pilot study. Blood Purif. 2018;46(4):301–8.PubMedCrossRef Durand PY, Nicco C, Serteyn D, Attaf D, Edeas M. Microbiota quality and mitochondrial activity link with occurrence of muscle cramps in hemodialysis patients using citrate dialysate: a pilot study. Blood Purif. 2018;46(4):301–8.PubMedCrossRef
63.
go back to reference Lakshmanan AP, Al Zaabi M, Ali BH, Terranegra A. The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomed Pharmacother. 2021;133:110992.PubMedCrossRef Lakshmanan AP, Al Zaabi M, Ali BH, Terranegra A. The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomed Pharmacother. 2021;133:110992.PubMedCrossRef
64.
go back to reference Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med. 2020;7:1–16.CrossRef Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med. 2020;7:1–16.CrossRef
65.
go back to reference Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Spurnic AR, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature. Int J Mol Sci. 2019;20(2):1–16.CrossRef Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Spurnic AR, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature. Int J Mol Sci. 2019;20(2):1–16.CrossRef
66.
go back to reference Albhaisi SAM, Bajaj JS, Sanyal AJ. Role of gut microbiota in liver disease. Am J Physiol Gastrointest Liver Physiol. 2020;318(1):G84-98.PubMedCrossRef Albhaisi SAM, Bajaj JS, Sanyal AJ. Role of gut microbiota in liver disease. Am J Physiol Gastrointest Liver Physiol. 2020;318(1):G84-98.PubMedCrossRef
68.
go back to reference Yang H, Guo R, Li S, Liang F, Tian C, Zhao X, et al. Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. Biofilms Microbiomes. 2020;6(1):1–12. Yang H, Guo R, Li S, Liang F, Tian C, Zhao X, et al. Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. Biofilms Microbiomes. 2020;6(1):1–12.
69.
go back to reference Zhang D, Huang Y, Ye D. Intestinal dysbiosis: an emerging cause of pregnancy complications? Med Hypotheses. 2015;84(3):223–6.PubMedCrossRef Zhang D, Huang Y, Ye D. Intestinal dysbiosis: an emerging cause of pregnancy complications? Med Hypotheses. 2015;84(3):223–6.PubMedCrossRef
70.
go back to reference Ma S, You Y, Huang L, Long S, Zhang J, Guo C, et al. Alterations in gut microbiota of gestational diabetes patients during the first trimester of pregnancy. Front Cell Infect Microbiol. 2020;27(10):58.CrossRef Ma S, You Y, Huang L, Long S, Zhang J, Guo C, et al. Alterations in gut microbiota of gestational diabetes patients during the first trimester of pregnancy. Front Cell Infect Microbiol. 2020;27(10):58.CrossRef
72.
go back to reference Kuang YS, Lu JH, Li SH, Li JH, Yuan MY, He JR, et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience. 2017;6:8.CrossRef Kuang YS, Lu JH, Li SH, Li JH, Yuan MY, He JR, et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience. 2017;6:8.CrossRef
74.
go back to reference Hasain Z, Mokhtar NM, Kamaruddin NA, Mohamed Ismail NA, Razalli NH, Gnanou JV, et al. Gut microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front Cell Infect Microbiol. 2020;15(10):188.CrossRef Hasain Z, Mokhtar NM, Kamaruddin NA, Mohamed Ismail NA, Razalli NH, Gnanou JV, et al. Gut microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front Cell Infect Microbiol. 2020;15(10):188.CrossRef
75.
go back to reference Wang J, Shi Z-H, Yang J, Wei Y, Wang X-Y, Zhao Y-Y. Gut microbiota dysbiosis in preeclampsia patients in the second and third trimesters. Chin Med J Engl. 2020;133(9):1057.PubMedPubMedCentralCrossRef Wang J, Shi Z-H, Yang J, Wei Y, Wang X-Y, Zhao Y-Y. Gut microbiota dysbiosis in preeclampsia patients in the second and third trimesters. Chin Med J Engl. 2020;133(9):1057.PubMedPubMedCentralCrossRef
76.
go back to reference Chen X, Li P, Liu M, Zheng H, He Y, Chen MX, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69(3):513–22.PubMedCrossRef Chen X, Li P, Liu M, Zheng H, He Y, Chen MX, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69(3):513–22.PubMedCrossRef
77.
go back to reference Chouzenoux S, Jeljeli M, Bourdon M, Doridot L, Thomas M, Barbeito A, et al. A new strategy against endometriosis: Oral probiotic treatments. Clin Obstet Gynecol Reprod Med. 2021;7(1):1–11. Chouzenoux S, Jeljeli M, Bourdon M, Doridot L, Thomas M, Barbeito A, et al. A new strategy against endometriosis: Oral probiotic treatments. Clin Obstet Gynecol Reprod Med. 2021;7(1):1–11.
78.
go back to reference Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nat. 2018;555(7698):623–8.CrossRef Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nat. 2018;555(7698):623–8.CrossRef
79.
go back to reference Macedo D, Filho AJMC, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HVN, et al. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32.PubMedCrossRef Macedo D, Filho AJMC, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HVN, et al. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32.PubMedCrossRef
80.
go back to reference Liśkiewicz P, Pełka-Wysiecka J, Kaczmarczyk M, Łoniewski I, Wroński M, Baba-Kubiś A, et al. Fecal microbiota analysis in patients going through a depressive episode during treatment in a psychiatric hospital setting. J Clin Med. 2019;8(2):164.PubMedCentralCrossRef Liśkiewicz P, Pełka-Wysiecka J, Kaczmarczyk M, Łoniewski I, Wroński M, Baba-Kubiś A, et al. Fecal microbiota analysis in patients going through a depressive episode during treatment in a psychiatric hospital setting. J Clin Med. 2019;8(2):164.PubMedCentralCrossRef
81.
go back to reference Liśkiewicz P, Kaczmarczyk M, Misiak B, Wroński M, Bąba-Kubiś A, Skonieczna-Żydecka K, et al. Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry. 2021;106:110076.CrossRef Liśkiewicz P, Kaczmarczyk M, Misiak B, Wroński M, Bąba-Kubiś A, Skonieczna-Żydecka K, et al. Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry. 2021;106:110076.CrossRef
82.
go back to reference Łoniewski I, Misera A, Skonieczna-Żydecka K, Kaczmarczyk M, Kaźmierczak-Siedlecka K, Misiak B, et al. Major depressive disorder and gut microbiota – association not causation. A scoping review. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;106:110111.CrossRef Łoniewski I, Misera A, Skonieczna-Żydecka K, Kaczmarczyk M, Kaźmierczak-Siedlecka K, Misiak B, et al. Major depressive disorder and gut microbiota – association not causation. A scoping review. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;106:110111.CrossRef
83.
go back to reference Misera A, Liśkiewicz P, Łoniewski I, Skonieczna-Żydecka K, Samochowiec J. Effect of psychobiotics on psychometric tests and inflammatory markers in major depressive disorder: meta-analysis of randomized controlled trials with meta-regression. Pharm. 2021;14(10):952. Misera A, Liśkiewicz P, Łoniewski I, Skonieczna-Żydecka K, Samochowiec J. Effect of psychobiotics on psychometric tests and inflammatory markers in major depressive disorder: meta-analysis of randomized controlled trials with meta-regression. Pharm. 2021;14(10):952.
85.
go back to reference Pełka-Wysiecka J, Kaczmarczyk M, Bąba-Kubiś A, Liśkiewicz P, Wroński M, Skonieczna-żydecka K, et al. Analysis of gut microbiota and their metabolic potential in patients with schizophrenia treated with olanzapine: results from a six-week observational prospective cohort study. J Clin Med. 2019;8(10):1605.PubMedCentralCrossRef Pełka-Wysiecka J, Kaczmarczyk M, Bąba-Kubiś A, Liśkiewicz P, Wroński M, Skonieczna-żydecka K, et al. Analysis of gut microbiota and their metabolic potential in patients with schizophrenia treated with olanzapine: results from a six-week observational prospective cohort study. J Clin Med. 2019;8(10):1605.PubMedCentralCrossRef
86.
go back to reference Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2020;19(2):77–94.PubMedCrossRef Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2020;19(2):77–94.PubMedCrossRef
87.
go back to reference Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol Metab. 2020;31(11):818–34.PubMedCrossRef Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol Metab. 2020;31(11):818–34.PubMedCrossRef
89.
go back to reference Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174–82.PubMedCrossRef Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174–82.PubMedCrossRef
90.
go back to reference Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.PubMedCrossRef Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.PubMedCrossRef
92.
go back to reference Kasahara K, Rey FE. The emerging role of gut microbial metabolism on cardiovascular disease. Curr Opin Microbiol. 2019;1(50):64–70.CrossRef Kasahara K, Rey FE. The emerging role of gut microbial metabolism on cardiovascular disease. Curr Opin Microbiol. 2019;1(50):64–70.CrossRef
93.
go back to reference Jansen VL, Gerdes VE, Middeldorp S, van Mens TE. Gut microbiota and their metabolites in cardiovascular disease. Best Pract Res Clin Endocrinol Metab. 2021;35(3):101492.PubMedCrossRef Jansen VL, Gerdes VE, Middeldorp S, van Mens TE. Gut microbiota and their metabolites in cardiovascular disease. Best Pract Res Clin Endocrinol Metab. 2021;35(3):101492.PubMedCrossRef
94.
go back to reference Tarashi S, Siadat SD, Badi SA, Zali M, Biassoni R, Ponzoni M, et al. Gut bacteria and their metabolites: which one is the defendant for colorectal cancer? Microorg. 2019;7(11):561.CrossRef Tarashi S, Siadat SD, Badi SA, Zali M, Biassoni R, Ponzoni M, et al. Gut bacteria and their metabolites: which one is the defendant for colorectal cancer? Microorg. 2019;7(11):561.CrossRef
95.
go back to reference Weissig V, Edeas M. Recent developments in mitochondrial medicine (Part 1). Open. 2021;4:2. Weissig V, Edeas M. Recent developments in mitochondrial medicine (Part 1). Open. 2021;4:2.
97.
go back to reference Jaworska K, Bielinska K, Gawrys-Kopczynska M, Ufnal M. TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: implications for interpretation of cardiovascular actions of gut microbiome. Cardiovasc Res. 2019;115(14):1948–9.PubMedCrossRef Jaworska K, Bielinska K, Gawrys-Kopczynska M, Ufnal M. TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: implications for interpretation of cardiovascular actions of gut microbiome. Cardiovasc Res. 2019;115(14):1948–9.PubMedCrossRef
98.
go back to reference Jaworska K, Hering D, Mosieniak G, Bielak-Zmijewska A, Pilz M, Konwerski M, et al. TMA, A forgotten uremic toxin, but not TMAO, is involved in cardiovascular pathology. Toxins. 2019;11(9):490.PubMedCentralCrossRef Jaworska K, Hering D, Mosieniak G, Bielak-Zmijewska A, Pilz M, Konwerski M, et al. TMA, A forgotten uremic toxin, but not TMAO, is involved in cardiovascular pathology. Toxins. 2019;11(9):490.PubMedCentralCrossRef
99.
go back to reference Jaworska K, Konop M, Hutsch T, Perlejewski K, Radkowski M, Grochowska M, et al. Trimethylamine but not trimethylamine oxide increases with age in rat plasma and affects smooth muscle cells viability. J Gerontol Ser A. 2020;75(7):1276–83.CrossRef Jaworska K, Konop M, Hutsch T, Perlejewski K, Radkowski M, Grochowska M, et al. Trimethylamine but not trimethylamine oxide increases with age in rat plasma and affects smooth muscle cells viability. J Gerontol Ser A. 2020;75(7):1276–83.CrossRef
100.
go back to reference Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 2020;310(4):151425.PubMedCrossRef Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 2020;310(4):151425.PubMedCrossRef
101.
102.
go back to reference Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutr. 2020;12(3):625. Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutr. 2020;12(3):625.
103.
go back to reference Ilhan ZE, DiBaise JK, Dautel SE, Isern NG, Kim YM, Hoyt DW, et al. Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. Biofilms Microbiomes. 2020;6(1):1–12. Ilhan ZE, DiBaise JK, Dautel SE, Isern NG, Kim YM, Hoyt DW, et al. Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. Biofilms Microbiomes. 2020;6(1):1–12.
104.
go back to reference Samczuk P, Luba M, Godzien J, Mastrangelo A, Hady HR, Dadan J, et al. “Gear mechanism” of bariatric interventions revealed by untargeted metabolomics. J Pharm Biomed Anal. 2018;20(151):219–26.CrossRef Samczuk P, Luba M, Godzien J, Mastrangelo A, Hady HR, Dadan J, et al. “Gear mechanism” of bariatric interventions revealed by untargeted metabolomics. J Pharm Biomed Anal. 2018;20(151):219–26.CrossRef
105.
go back to reference Samczuk P, Hady HR, Adamska-Patruno E, Citko A, Dadan J, Barbas C, et al. In-and-out molecular changes linked to the type 2 diabetes remission after bariatric surgery: an influence of gut microbes on mitochondria metabolism. Int J Mol Sci. 2018;19(12):3744.PubMedCentralCrossRef Samczuk P, Hady HR, Adamska-Patruno E, Citko A, Dadan J, Barbas C, et al. In-and-out molecular changes linked to the type 2 diabetes remission after bariatric surgery: an influence of gut microbes on mitochondria metabolism. Int J Mol Sci. 2018;19(12):3744.PubMedCentralCrossRef
106.
go back to reference Samczuk P, Ciborowski M, Kretowski A. Application of metabolomics to study effects of bariatric surgery. J Diabetes Res. 2018;2018:90.CrossRef Samczuk P, Ciborowski M, Kretowski A. Application of metabolomics to study effects of bariatric surgery. J Diabetes Res. 2018;2018:90.CrossRef
107.
go back to reference Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;19(10):9.CrossRef Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;19(10):9.CrossRef
109.
go back to reference Yin GF, Li B, Fan XM. Effects and mechanism of fecal transplantation on acute lung injury induced by lipopolysaccharide in rats. Zhonghua Yi Xue Za Zhi. 2019;99(20):1582–7.PubMed Yin GF, Li B, Fan XM. Effects and mechanism of fecal transplantation on acute lung injury induced by lipopolysaccharide in rats. Zhonghua Yi Xue Za Zhi. 2019;99(20):1582–7.PubMed
110.
go back to reference Biliński J, Winter K, Jasiński M, Szczȩś A, Bilinska N, Mullish BH, et al. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut. 2022;71(1):230–2.PubMedCrossRef Biliński J, Winter K, Jasiński M, Szczȩś A, Bilinska N, Mullish BH, et al. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut. 2022;71(1):230–2.PubMedCrossRef
111.
go back to reference Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP, dos Santos AÁ, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun. 2019;10(1):1–17.CrossRef Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP, dos Santos AÁ, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun. 2019;10(1):1–17.CrossRef
112.
go back to reference Bradley KC, Finsterbusch K, Schnepf D, Crotta S, Llorian M, Davidson S, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 2019;28(1):245-256.e4.PubMedCrossRef Bradley KC, Finsterbusch K, Schnepf D, Crotta S, Llorian M, Davidson S, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 2019;28(1):245-256.e4.PubMedCrossRef
113.
go back to reference Sencio V, Machado MG, Trottein F. The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 2021;14(2):296–304.PubMedPubMedCentralCrossRef Sencio V, Machado MG, Trottein F. The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 2021;14(2):296–304.PubMedPubMedCentralCrossRef
114.
go back to reference Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev. 2021;66:101235.PubMedCrossRef Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev. 2021;66:101235.PubMedCrossRef
116.
go back to reference Taveras NT, Martinez AR, Kumar R, Jamil A, Kumar B. Pulmonary manifestations of inflammatory bowel disease. Cureus. 2021;13:3. Taveras NT, Martinez AR, Kumar R, Jamil A, Kumar B. Pulmonary manifestations of inflammatory bowel disease. Cureus. 2021;13:3.
117.
go back to reference Frati F, Salvatori C, Incorvaia C, Bellucci A, Di Cara G, Marcucci F, et al. The role of the microbiome in asthma: the gut-lung axis. Int J Mol Sci. 2019;20(1):123.CrossRef Frati F, Salvatori C, Incorvaia C, Bellucci A, Di Cara G, Marcucci F, et al. The role of the microbiome in asthma: the gut-lung axis. Int J Mol Sci. 2019;20(1):123.CrossRef
118.
121.
go back to reference Durack J, Kimes NE, Lin DL, Rauch M, McKean M, McCauley K, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun. 2018;9(1):1–9.CrossRef Durack J, Kimes NE, Lin DL, Rauch M, McKean M, McCauley K, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun. 2018;9(1):1–9.CrossRef
122.
go back to reference Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11(1):1–15.CrossRef Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11(1):1–15.CrossRef
125.
126.
go back to reference Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. Microbiome dysbiosis in lung cancer: from composition to therapy. Precis Oncol. 2020;4(1):1–12. Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. Microbiome dysbiosis in lung cancer: from composition to therapy. Precis Oncol. 2020;4(1):1–12.
128.
go back to reference de Oliveira GLV, Oliveira CNS, Pinzan CF, de Salis LVV, Cardoso CRB. Microbiota modulation of the gut-lung axis in COVID-19. Front Immunol. 2021;12:9.CrossRef de Oliveira GLV, Oliveira CNS, Pinzan CF, de Salis LVV, Cardoso CRB. Microbiota modulation of the gut-lung axis in COVID-19. Front Immunol. 2021;12:9.CrossRef
130.
133.
go back to reference Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2020;19(4):241–55.PubMedCrossRef Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2020;19(4):241–55.PubMedCrossRef
134.
go back to reference Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, et al. The contribution of gut microbiota-brain axis in the development of brain disorders. Front Neurosci. 2021;23(15):170. Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, et al. The contribution of gut microbiota-brain axis in the development of brain disorders. Front Neurosci. 2021;23(15):170.
135.
go back to reference Sudo N. Role of gut microbiota in brain function and stress-related pathology. Biosci Microbiota Food Heal. 2019;38(3):19–006. Sudo N. Role of gut microbiota in brain function and stress-related pathology. Biosci Microbiota Food Heal. 2019;38(3):19–006.
136.
go back to reference Sabit H, Tombuloglu H, Rehman S, Almandil NB, Cevik E, Abdel-Ghany S, et al. Gut microbiota metabolites in autistic children: An epigenetic perspective. Heliyon. 2021;7(1):e06105.PubMedPubMedCentralCrossRef Sabit H, Tombuloglu H, Rehman S, Almandil NB, Cevik E, Abdel-Ghany S, et al. Gut microbiota metabolites in autistic children: An epigenetic perspective. Heliyon. 2021;7(1):e06105.PubMedPubMedCentralCrossRef
137.
go back to reference Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The Gut Microbiome and Schizophrenia: the current state of the field and clinical applications. Front Psychiatry. 2020;12(11):156.CrossRef Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The Gut Microbiome and Schizophrenia: the current state of the field and clinical applications. Front Psychiatry. 2020;12(11):156.CrossRef
140.
go back to reference Keshavarzian A, Engen P, Bonvegna S, Cilia R. The gut microbiome in Parkinson’s disease: a culprit or a bystander? Prog Brain Res. 2020;1(252):357–450.CrossRef Keshavarzian A, Engen P, Bonvegna S, Cilia R. The gut microbiome in Parkinson’s disease: a culprit or a bystander? Prog Brain Res. 2020;1(252):357–450.CrossRef
141.
go back to reference Tian T, Xu B, Qin Y, Fan L, Chen J, Zheng P, et al. Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochem Biophys Res Commun. 2019;516(2):430–6.PubMedCrossRef Tian T, Xu B, Qin Y, Fan L, Chen J, Zheng P, et al. Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochem Biophys Res Commun. 2019;516(2):430–6.PubMedCrossRef
142.
go back to reference Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol. 2020;10(11):3237. Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol. 2020;10(11):3237.
143.
go back to reference Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimer’s Dis. 2015;45(2):349–62.CrossRef Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimer’s Dis. 2015;45(2):349–62.CrossRef
145.
go back to reference Westfall S, Dinh DM, Pasinetti GM. Investigation of Potential Brain Microbiome in Alzheimer’s Disease: implications of Study Bias. J Alzheimer’s Dis. 2020;75(2):559–70.CrossRef Westfall S, Dinh DM, Pasinetti GM. Investigation of Potential Brain Microbiome in Alzheimer’s Disease: implications of Study Bias. J Alzheimer’s Dis. 2020;75(2):559–70.CrossRef
146.
go back to reference Shen L, Ji HF. Associations between gut microbiota and alzheimer’s disease: current evidences and future therapeutic and diagnostic perspectives. J Alzheimer’s Dis. 2019;68(1):25–31.CrossRef Shen L, Ji HF. Associations between gut microbiota and alzheimer’s disease: current evidences and future therapeutic and diagnostic perspectives. J Alzheimer’s Dis. 2019;68(1):25–31.CrossRef
147.
go back to reference Frolinger T, Sims S, Smith C, Wang J, Cheng H, Faith J, et al. The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Sci Rep. 2019;12:9. Frolinger T, Sims S, Smith C, Wang J, Cheng H, Faith J, et al. The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Sci Rep. 2019;12:9.
148.
go back to reference Abdallah F, Mijouin L, Pichon C. Skin Immune Landscape: Inside and Outside the Organism. Mediators Inflamm. 2017;2017:89.CrossRef Abdallah F, Mijouin L, Pichon C. Skin Immune Landscape: Inside and Outside the Organism. Mediators Inflamm. 2017;2017:89.CrossRef
149.
150.
go back to reference Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1–14.CrossRef Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1–14.CrossRef
151.
go back to reference Ellis SR, Nguyen M, Vaughn AR, Notay M, Burney WA, Sandhu S, et al. The skin and gut microbiome and its role in common dermatologic conditions. Microorg. 2019;7(11):550.CrossRef Ellis SR, Nguyen M, Vaughn AR, Notay M, Burney WA, Sandhu S, et al. The skin and gut microbiome and its role in common dermatologic conditions. Microorg. 2019;7(11):550.CrossRef
152.
go back to reference Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorg. 2021;9(2):353.CrossRef Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorg. 2021;9(2):353.CrossRef
153.
go back to reference Hsu DK, Fung MA, Chen HL. Role of skin and gut microbiota in the pathogenesis of psoriasis, an inflammatory skin disease. Med Microecol. 2020;4:100016.CrossRef Hsu DK, Fung MA, Chen HL. Role of skin and gut microbiota in the pathogenesis of psoriasis, an inflammatory skin disease. Med Microecol. 2020;4:100016.CrossRef
154.
go back to reference Reddel S, Del Chierico F, Quagliariello A, Giancristoforo S, Vernocchi P, Russo A, et al. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci Rep. 2019;9(1):1–10.CrossRef Reddel S, Del Chierico F, Quagliariello A, Giancristoforo S, Vernocchi P, Russo A, et al. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci Rep. 2019;9(1):1–10.CrossRef
155.
go back to reference Vergara D, Simeone P, Damato M, Maffia M, Lanuti P, Trerotola M. The Cancer Microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression. J Oncol. 2019;2019:9.CrossRef Vergara D, Simeone P, Damato M, Maffia M, Lanuti P, Trerotola M. The Cancer Microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression. J Oncol. 2019;2019:9.CrossRef
156.
go back to reference Yerushalmi M, Elalouf O, Anderson M, Chandran V. The skin microbiome in psoriatic disease: a systematic review and critical appraisal. J Transl Autoimmun. 2019;2:100009.PubMedPubMedCentralCrossRef Yerushalmi M, Elalouf O, Anderson M, Chandran V. The skin microbiome in psoriatic disease: a systematic review and critical appraisal. J Transl Autoimmun. 2019;2:100009.PubMedPubMedCentralCrossRef
157.
go back to reference Sikora M, Stec A, Chrabaszcz M, Knot A, Waskiel-Burnat A, Rakowska A, et al. Gut microbiome in psoriasis: an updated review. Pathog. 2020;9(6):463.CrossRef Sikora M, Stec A, Chrabaszcz M, Knot A, Waskiel-Burnat A, Rakowska A, et al. Gut microbiome in psoriasis: an updated review. Pathog. 2020;9(6):463.CrossRef
158.
go back to reference Herbert D, Franz S, Popkova Y, Anderegg U, Schiller J, Schwede K, et al. High-fat diet exacerbates early psoriatic skin inflammation independent of obesity: saturated fatty acids as key players. J Invest Dermatol. 2018;138(9):1999–2009.PubMedCrossRef Herbert D, Franz S, Popkova Y, Anderegg U, Schiller J, Schwede K, et al. High-fat diet exacerbates early psoriatic skin inflammation independent of obesity: saturated fatty acids as key players. J Invest Dermatol. 2018;138(9):1999–2009.PubMedCrossRef
160.
go back to reference Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol. 2020;15(11):3201. Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol. 2020;15(11):3201.
163.
164.
go back to reference Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.PubMedCrossRef Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.PubMedCrossRef
165.
go back to reference Scott KP, Tuohy KM, Mach-Istituto FE, San A, Alladige M, Gibson GR, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7(1):1–19.CrossRef Scott KP, Tuohy KM, Mach-Istituto FE, San A, Alladige M, Gibson GR, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7(1):1–19.CrossRef
166.
go back to reference Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92.PubMedCentralCrossRef Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92.PubMedCentralCrossRef
167.
go back to reference Naseer M, Poola S, Ali S, Samiullah S, Tahan V. Prebiotics and probiotics in inflammatory bowel disease: where are we now and where are we going? Curr Clin Pharmacol. 2020;15(3):216–33.PubMed Naseer M, Poola S, Ali S, Samiullah S, Tahan V. Prebiotics and probiotics in inflammatory bowel disease: where are we now and where are we going? Curr Clin Pharmacol. 2020;15(3):216–33.PubMed
168.
go back to reference Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al-Hassi HO, Rayment N, et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut. 2006;55(3):348–55.PubMedPubMedCentralCrossRef Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al-Hassi HO, Rayment N, et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut. 2006;55(3):348–55.PubMedPubMedCentralCrossRef
169.
go back to reference Brochot A, Azalbert V, Landrier JF, Tourniaire F, Serino M. A Two-week treatment with plant extracts changes gut microbiota, caecum metabolome, and markers of lipid metabolism in ob/ob Mice. Mol Nutr Food Res. 2019;63(17):1–12. Brochot A, Azalbert V, Landrier JF, Tourniaire F, Serino M. A Two-week treatment with plant extracts changes gut microbiota, caecum metabolome, and markers of lipid metabolism in ob/ob Mice. Mol Nutr Food Res. 2019;63(17):1–12.
170.
go back to reference Scaldaferri F, Gerardi V, Lopetuso LR, Del Zompo F, Mangiola F, Boškoski I, et al. Gut microbial flora, prebiotics, and probiotics in IBD: Their current usage and utility. Biomed Res Int. 2013;2013:90.CrossRef Scaldaferri F, Gerardi V, Lopetuso LR, Del Zompo F, Mangiola F, Boškoski I, et al. Gut microbial flora, prebiotics, and probiotics in IBD: Their current usage and utility. Biomed Res Int. 2013;2013:90.CrossRef
171.
go back to reference Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol. 2016;30(1):119–31.PubMedCrossRef Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol. 2016;30(1):119–31.PubMedCrossRef
172.
go back to reference Xie X, He Y, Li H, Yu D, Na L, Sun T, et al. Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients. Nutrition. 2019;1(61):132–42.CrossRef Xie X, He Y, Li H, Yu D, Na L, Sun T, et al. Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients. Nutrition. 2019;1(61):132–42.CrossRef
173.
go back to reference Suganya K, Koo BS. Gut-brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci. 2020;21(20):7551.PubMedCentralCrossRef Suganya K, Koo BS. Gut-brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci. 2020;21(20):7551.PubMedCentralCrossRef
174.
go back to reference Kong G, Cao KAL, Judd LM, Li SS, Renoir T, Hannan AJ. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 2021;135:104268.CrossRef Kong G, Cao KAL, Judd LM, Li SS, Renoir T, Hannan AJ. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 2021;135:104268.CrossRef
175.
go back to reference Wasser CI, Mercieca E-C, Kong G, Hannan AJ, McKeown SJ, Glikmann-Johnston Y, et al. Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun. 2020;2:2.CrossRef Wasser CI, Mercieca E-C, Kong G, Hannan AJ, McKeown SJ, Glikmann-Johnston Y, et al. Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun. 2020;2:2.CrossRef
176.
go back to reference Yang H, Liu Y, Cai R, Li Y, Gu B. A narrative review of relationship between gut microbiota and neuropsychiatric disorders: mechanisms and clinical application of probiotics and prebiotics. Ann Palliat Med. 2021;10(2):2304–13.PubMedCrossRef Yang H, Liu Y, Cai R, Li Y, Gu B. A narrative review of relationship between gut microbiota and neuropsychiatric disorders: mechanisms and clinical application of probiotics and prebiotics. Ann Palliat Med. 2021;10(2):2304–13.PubMedCrossRef
177.
go back to reference Johnstone N, Milesi C, Burn O, van den Bogert B, Nauta A, Hart K, et al. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Sci Reports. 2021;11(1):1–11. Johnstone N, Milesi C, Burn O, van den Bogert B, Nauta A, Hart K, et al. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Sci Reports. 2021;11(1):1–11.
178.
go back to reference Reid G. Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol. 2016;30(1):17–25.PubMedCrossRef Reid G. Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol. 2016;30(1):17–25.PubMedCrossRef
179.
go back to reference Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the treatment of overweight and obesity in humans—a review of clinical trials. Microorg. 2020;8(8):1148.CrossRef Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the treatment of overweight and obesity in humans—a review of clinical trials. Microorg. 2020;8(8):1148.CrossRef
183.
go back to reference He X, Zhao S, Li Y. Faecalibacterium prausnitzii: A Next-Generation Probiotic in Gut Disease Improvement. Can J Infect Dis Med Microbiol. 2021;2021:67.CrossRef He X, Zhao S, Li Y. Faecalibacterium prausnitzii: A Next-Generation Probiotic in Gut Disease Improvement. Can J Infect Dis Med Microbiol. 2021;2021:67.CrossRef
185.
go back to reference Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Ismail N, Matar C. Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecule. 2020;25(21):4891.CrossRef Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Ismail N, Matar C. Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecule. 2020;25(21):4891.CrossRef
187.
go back to reference Arora K, Green M, Prakash S. The microbiome and alzheimer’s disease: potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol. 2020;14(8):1411. Arora K, Green M, Prakash S. The microbiome and alzheimer’s disease: potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol. 2020;14(8):1411.
188.
go back to reference Caselli E, Arnoldo L, Rognoni C, D’Accolti M, Soffritti I, Lanzoni L, et al. Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: a multicenter study. Infect Drug Resist. 2019;12:501.PubMedPubMedCentralCrossRef Caselli E, Arnoldo L, Rognoni C, D’Accolti M, Soffritti I, Lanzoni L, et al. Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: a multicenter study. Infect Drug Resist. 2019;12:501.PubMedPubMedCentralCrossRef
191.
go back to reference Napolitano M, Covasa M. Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol. 2020;12(11):2877. Napolitano M, Covasa M. Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol. 2020;12(11):2877.
192.
193.
go back to reference Nicco C, Paule A, Konturek P, Edeas M. From donor to patient: collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Dis. 2020;8(2):9. Nicco C, Paule A, Konturek P, Edeas M. From donor to patient: collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Dis. 2020;8(2):9.
195.
go back to reference Cheminet G, Kapel N, Bleibtreu A, Sadou-Yaye H, Bellanger A, Duval X, et al. Faecal microbiota transplantation with frozen capsules for relapsing Clostridium difficile infections: the first experience from 15 consecutive patients in France. J Hosp Infect. 2018;100(2):148–51.PubMedCrossRef Cheminet G, Kapel N, Bleibtreu A, Sadou-Yaye H, Bellanger A, Duval X, et al. Faecal microbiota transplantation with frozen capsules for relapsing Clostridium difficile infections: the first experience from 15 consecutive patients in France. J Hosp Infect. 2018;100(2):148–51.PubMedCrossRef
197.
go back to reference Huttner BD, de Lastours V, Wassenberg M, Maharshak N, Mauris A, Galperine T, et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin Microbiol Infect. 2019;25(7):830–8.PubMedCrossRef Huttner BD, de Lastours V, Wassenberg M, Maharshak N, Mauris A, Galperine T, et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin Microbiol Infect. 2019;25(7):830–8.PubMedCrossRef
198.
go back to reference Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, Single-Center Study. Clin Infect Dis. 2017;65(3):364–70.PubMedCrossRef Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, Single-Center Study. Clin Infect Dis. 2017;65(3):364–70.PubMedCrossRef
199.
go back to reference Singh R, De Groot PF, Geerlings SE, Hodiamont CJ, Belzer C, Berge IJMT, et al. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: A proof of principle study ISRCTN48328635 ISRCTN. BMC Res Notes. 2018;11(1):1–6. https://doi.org/10.1186/s13104-018-3293-x.CrossRef Singh R, De Groot PF, Geerlings SE, Hodiamont CJ, Belzer C, Berge IJMT, et al. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: A proof of principle study ISRCTN48328635 ISRCTN. BMC Res Notes. 2018;11(1):1–6. https://​doi.​org/​10.​1186/​s13104-018-3293-x.CrossRef
200.
go back to reference Leung V, Vincent C, Edens TJ, Miller M, Manges AR. Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent Clostridium difficile Infection. Clin Infect Dis. 2018;66(3):456–7.PubMedCrossRef Leung V, Vincent C, Edens TJ, Miller M, Manges AR. Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent Clostridium difficile Infection. Clin Infect Dis. 2018;66(3):456–7.PubMedCrossRef
201.
go back to reference Davido B, Salomon J, Lawrence C, Duran C, Batista R, De Truchis P, et al. Impact of fecal microbiota transplantation for decolonization of multidrug-resistant organisms may vary according to donor microbiota. Clin Infect Dis. 2018;66(8):1316–7.PubMed Davido B, Salomon J, Lawrence C, Duran C, Batista R, De Truchis P, et al. Impact of fecal microbiota transplantation for decolonization of multidrug-resistant organisms may vary according to donor microbiota. Clin Infect Dis. 2018;66(8):1316–7.PubMed
202.
go back to reference Tacconelli E, Mazzaferri F, de Smet AM, Bragantini D, Eggimann P, Huttner BD, et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin Microbiol Infect. 2019;25(7):807–17.PubMedCrossRef Tacconelli E, Mazzaferri F, de Smet AM, Bragantini D, Eggimann P, Huttner BD, et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin Microbiol Infect. 2019;25(7):807–17.PubMedCrossRef
203.
go back to reference Bilinski J, Robak K, Peric Z, Marchel H, Karakulska-Prystupiuk E, Halaburda K, et al. Impact of Gut colonization by antibiotic-resistant bacteria on the outcomes of allogeneic hematopoietic stem cell transplantation: a retrospective. Single-Center Study Biol Blood Marrow Transplant. 2016;22(6):1087–93.PubMedCrossRef Bilinski J, Robak K, Peric Z, Marchel H, Karakulska-Prystupiuk E, Halaburda K, et al. Impact of Gut colonization by antibiotic-resistant bacteria on the outcomes of allogeneic hematopoietic stem cell transplantation: a retrospective. Single-Center Study Biol Blood Marrow Transplant. 2016;22(6):1087–93.PubMedCrossRef
204.
go back to reference Peric Z, Vranjes VR, Durakovic N, Desnica L, Marekovic I, Serventi-Seiwerth R, et al. Gut colonization by multidrug-resistant gram-negative bacteria is an independent risk factor for development of intestinal acute graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(7):1221–2.PubMedCrossRef Peric Z, Vranjes VR, Durakovic N, Desnica L, Marekovic I, Serventi-Seiwerth R, et al. Gut colonization by multidrug-resistant gram-negative bacteria is an independent risk factor for development of intestinal acute graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(7):1221–2.PubMedCrossRef
205.
go back to reference Biliński J, Grzesiowski P, Muszyński J, Wróblewska M, Mądry K, Robak K, et al. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp (Warsz). 2016;64(3):255–8.CrossRef Biliński J, Grzesiowski P, Muszyński J, Wróblewska M, Mądry K, Robak K, et al. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp (Warsz). 2016;64(3):255–8.CrossRef
206.
go back to reference Dinh A, Fessi H, Duran C, Batista R, Michelon H, Bouchand F, et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect. 2018;99(4):481–6.PubMedCrossRef Dinh A, Fessi H, Duran C, Batista R, Michelon H, Bouchand F, et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect. 2018;99(4):481–6.PubMedCrossRef
207.
go back to reference Battipaglia G, Malard F, Rubio MT, Ruggeri A, Mamez AC, Brissot E, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica. 2019;104(8):1682.PubMedPubMedCentralCrossRef Battipaglia G, Malard F, Rubio MT, Ruggeri A, Mamez AC, Brissot E, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica. 2019;104(8):1682.PubMedPubMedCentralCrossRef
208.
go back to reference Bilinski J, Lis K, Tomaszewska A, Grzesiowski P, Dzieciatkowski T, Tyszka M, et al. Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile Results from a prospective, multicenter study. Am J Hematol. 2021;96(3):E88-91.PubMedCrossRef Bilinski J, Lis K, Tomaszewska A, Grzesiowski P, Dzieciatkowski T, Tyszka M, et al. Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile Results from a prospective, multicenter study. Am J Hematol. 2021;96(3):E88-91.PubMedCrossRef
209.
go back to reference Biliński J, Jasiński M, Tomaszewska A, Lis K, Kacprzyk P, Chmielewska L, et al. Fecal microbiota transplantation with ruxolitinib as a treatment modality for steroid-refractory/dependent acute, gastrointestinal graft-versus-host disease: A case series. Am J Hematol. 2021;96(12):E461–3.PubMedCrossRef Biliński J, Jasiński M, Tomaszewska A, Lis K, Kacprzyk P, Chmielewska L, et al. Fecal microbiota transplantation with ruxolitinib as a treatment modality for steroid-refractory/dependent acute, gastrointestinal graft-versus-host disease: A case series. Am J Hematol. 2021;96(12):E461–3.PubMedCrossRef
210.
go back to reference Zhao Y, Li X, Zhou Y, Gao J, Jiao Y, Zhu B, et al. Safety and Efficacy of Fecal Microbiota Transplantation for Grade IV Steroid Refractory GI-GvHD Patients: Interim Results From FMT2017002 Trial. Front Immunol. 2021;17(12):2405. Zhao Y, Li X, Zhou Y, Gao J, Jiao Y, Zhu B, et al. Safety and Efficacy of Fecal Microbiota Transplantation for Grade IV Steroid Refractory GI-GvHD Patients: Interim Results From FMT2017002 Trial. Front Immunol. 2021;17(12):2405.
211.
go back to reference De Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021;70(1):92–105.PubMedCrossRef De Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021;70(1):92–105.PubMedCrossRef
212.
go back to reference Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front Cell Infect Microbiol. 2020;9:455.PubMedPubMedCentralCrossRef Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front Cell Infect Microbiol. 2020;9:455.PubMedPubMedCentralCrossRef
213.
go back to reference Paule A, Frezza D, Edeas M. Microbiota and phage therapy: future challenges in medicine. Med Sci. 2018;6(4):86. Paule A, Frezza D, Edeas M. Microbiota and phage therapy: future challenges in medicine. Med Sci. 2018;6(4):86.
214.
go back to reference Hsu BB, Plant IN, Lyon L, Anastassacos FM, Way JC, Silver PA. In situ reprogramming of gut bacteria by oral delivery. Nat Commun. 2020;11(1):1–11.CrossRef Hsu BB, Plant IN, Lyon L, Anastassacos FM, Way JC, Silver PA. In situ reprogramming of gut bacteria by oral delivery. Nat Commun. 2020;11(1):1–11.CrossRef
215.
go back to reference Rasmussen TS, Koefoed AK, Jakobsen RR, Deng L, Castro-Mejia JL, Brunse A, et al. Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiol Rev. 2020;44(4):507–21.PubMedCrossRef Rasmussen TS, Koefoed AK, Jakobsen RR, Deng L, Castro-Mejia JL, Brunse A, et al. Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiol Rev. 2020;44(4):507–21.PubMedCrossRef
217.
go back to reference Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 2019;10:1360.PubMedPubMedCentralCrossRef Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 2019;10:1360.PubMedPubMedCentralCrossRef
218.
go back to reference Ussher JR, Lopaschuk GD, Arduini A. Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis. 2013;231(2):456–61.PubMedCrossRef Ussher JR, Lopaschuk GD, Arduini A. Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis. 2013;231(2):456–61.PubMedCrossRef
219.
go back to reference Videja M, Vilskersts R, Korzh S, Cirule H, Sevostjanovs E, Dambrova M, et al. Microbiota-derived metabolite trimethylamine n-oxide protects mitochondrial energy metabolism and cardiac functionality in a rat model of right ventricle heart failure. Front Cell Dev Biol. 2021;8:1808.CrossRef Videja M, Vilskersts R, Korzh S, Cirule H, Sevostjanovs E, Dambrova M, et al. Microbiota-derived metabolite trimethylamine n-oxide protects mitochondrial energy metabolism and cardiac functionality in a rat model of right ventricle heart failure. Front Cell Dev Biol. 2021;8:1808.CrossRef
220.
go back to reference Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020;11:25.CrossRef Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020;11:25.CrossRef
222.
go back to reference Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43(4):817–29.PubMedCrossRef Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43(4):817–29.PubMedCrossRef
224.
go back to reference Dalile B, Vervliet B, Bergonzelli G, Verbeke K, Van Oudenhove L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacol. 2020;45(13):2257–66.CrossRef Dalile B, Vervliet B, Bergonzelli G, Verbeke K, Van Oudenhove L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacol. 2020;45(13):2257–66.CrossRef
226.
go back to reference Campbell EA, Darst SA, Rice CM, Brady F. Metabolites with SARS-CoV-2 inhibitory activity identified from human microbiome commensals. Am Soc Microbiol. 2021;6(6):e00711-e721. Campbell EA, Darst SA, Rice CM, Brady F. Metabolites with SARS-CoV-2 inhibitory activity identified from human microbiome commensals. Am Soc Microbiol. 2021;6(6):e00711-e721.
227.
go back to reference Peng Y, Nie Y, Yu J, Wong CC. Microbial metabolites in colorectal cancer: basic and clinical implications. Metab. 2021;11(3):159. Peng Y, Nie Y, Yu J, Wong CC. Microbial metabolites in colorectal cancer: basic and clinical implications. Metab. 2021;11(3):159.
228.
go back to reference Le Leu RK, Winter JM, Christophersen CT, Young GP, Humphreys KJ, Hu Y, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114(2):220–30.PubMedPubMedCentralCrossRef Le Leu RK, Winter JM, Christophersen CT, Young GP, Humphreys KJ, Hu Y, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114(2):220–30.PubMedPubMedCentralCrossRef
231.
go back to reference Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. The murine caecal microrna signature depends on the presence of the endogenous microbiota. Int J Biol Sci. 2012;8(2):171.PubMedCrossRef Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. The murine caecal microrna signature depends on the presence of the endogenous microbiota. Int J Biol Sci. 2012;8(2):171.PubMedCrossRef
232.
go back to reference Wen B, Tokar T, Taibi A, Chen J, Jurisica I, Comelli EM. Citrobacter rodentium alters the mouse colonic miRNome. Genes Immun. 2018;20(3):207–13.PubMedCrossRef Wen B, Tokar T, Taibi A, Chen J, Jurisica I, Comelli EM. Citrobacter rodentium alters the mouse colonic miRNome. Genes Immun. 2018;20(3):207–13.PubMedCrossRef
234.
go back to reference Axis M, Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, et al. Hyaluronan: A Neuroimmune Modulator in the cell. Cells. 2022;11(126):1–20. Axis M, Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, et al. Hyaluronan: A Neuroimmune Modulator in the cell. Cells. 2022;11(126):1–20.
235.
go back to reference Huynh A, Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology. Carbohydr Res. 2020;489:107950.PubMedCrossRef Huynh A, Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology. Carbohydr Res. 2020;489:107950.PubMedCrossRef
236.
go back to reference Fuhlendorff BL, Schwach-Abdellaoui K, Longin F, Eenschooten C. New recombinant hyaluronic acid for eye care and ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 2013;54(15):4327–4327. Fuhlendorff BL, Schwach-Abdellaoui K, Longin F, Eenschooten C. New recombinant hyaluronic acid for eye care and ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 2013;54(15):4327–4327.
237.
238.
go back to reference Longinotti C. The use of hyaluronic acid based dressings to treat burns: A review. Burn Trauma. 2014;2(4):162–8.CrossRef Longinotti C. The use of hyaluronic acid based dressings to treat burns: A review. Burn Trauma. 2014;2(4):162–8.CrossRef
239.
go back to reference Petrey AC, de la Motte CA. Hyaluronan in inflammatory bowel disease: Cross-linking inflammation and coagulation. Matrix Biol. 2019;78–79:314–23.PubMedCrossRef Petrey AC, de la Motte CA. Hyaluronan in inflammatory bowel disease: Cross-linking inflammation and coagulation. Matrix Biol. 2019;78–79:314–23.PubMedCrossRef
240.
go back to reference Vigetti D, Viola M, Karousou E, De Luca G, Passi A. Metabolic control of hyaluronan synthases. Matrix Biol. 2014;35:8–13.PubMedCrossRef Vigetti D, Viola M, Karousou E, De Luca G, Passi A. Metabolic control of hyaluronan synthases. Matrix Biol. 2014;35:8–13.PubMedCrossRef
242.
go back to reference Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015;24:29–39.PubMedCrossRef Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015;24:29–39.PubMedCrossRef
243.
go back to reference Lee Y, Sugihara K, Gillilland MG, Jon S, Kamada N, Moon JJ. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2019;19(1):118–26.PubMedPubMedCentralCrossRef Lee Y, Sugihara K, Gillilland MG, Jon S, Kamada N, Moon JJ. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2019;19(1):118–26.PubMedPubMedCentralCrossRef
244.
go back to reference Zheng L, Riehl TE, Stenson WF. Regulation of Colonic Epithelial Repair in Mice by Toll-Like Receptors and Hyaluronic Acid. Gastroenterology. 2009;137(6):2041–51.PubMedCrossRef Zheng L, Riehl TE, Stenson WF. Regulation of Colonic Epithelial Repair in Mice by Toll-Like Receptors and Hyaluronic Acid. Gastroenterology. 2009;137(6):2041–51.PubMedCrossRef
245.
go back to reference Filpa V, Bistoletti M, Caon I, Moro E, Grimaldi A, Moretto P, et al. Changes in hyaluronan deposition in the rat myenteric plexus after experimentally-induced colitis. Sci Rep. 2017;7(1):1–11.CrossRef Filpa V, Bistoletti M, Caon I, Moro E, Grimaldi A, Moretto P, et al. Changes in hyaluronan deposition in the rat myenteric plexus after experimentally-induced colitis. Sci Rep. 2017;7(1):1–11.CrossRef
246.
go back to reference Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, et al. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol. 2021;107:240–51.CrossRef Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, et al. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol. 2021;107:240–51.CrossRef
249.
go back to reference Saint-Georges-Chaumet Y, Edeas M. Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. FEMS Pathog Dis. 2016;12:9. Saint-Georges-Chaumet Y, Edeas M. Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. FEMS Pathog Dis. 2016;12:9.
250.
go back to reference Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a derived from mesenchymal stem cells improves gut microbiota composition, barrier function, and inflammatory status in an experimental colitis model. Front Med. 2021;10:898. Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a derived from mesenchymal stem cells improves gut microbiota composition, barrier function, and inflammatory status in an experimental colitis model. Front Med. 2021;10:898.
Metadata
Title
Microbiota medicine: towards clinical revolution
Authors
Prisca Gebrayel
Carole Nicco
Souhaila Al Khodor
Jaroslaw Bilinski
Elisabetta Caselli
Elena M. Comelli
Markus Egert
Cristina Giaroni
Tomasz M. Karpinski
Igor Loniewski
Agata Mulak
Julie Reygner
Paulina Samczuk
Matteo Serino
Mariusz Sikora
Annalisa Terranegra
Marcin Ufnal
Romain Villeger
Chantal Pichon
Peter Konturek
Marvin Edeas
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03296-9

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine