Skip to main content
Top
Published in: Radiological Physics and Technology 4/2018

01-12-2018

Potentials of radiomics for cancer diagnosis and treatment in comparison with computer-aided diagnosis

Authors: Hidetaka Arimura, Mazen Soufi, Kenta Ninomiya, Hidemi Kamezawa, Masahiro Yamada

Published in: Radiological Physics and Technology | Issue 4/2018

Login to get access

Abstract

Computer-aided diagnosis (CAD) is a field that is essentially based on pattern recognition that improves the accuracy of a diagnosis made by a physician who takes into account the computer’s “opinion” derived from the quantitative analysis of radiological images. Radiomics is a field based on data science that massively and comprehensively analyzes a large number of medical images to extract a large number of phenotypic features reflecting disease traits, and explores the associations between the features and patients’ prognoses for precision medicine. According to the definitions for both, you may think that radiomics is not a paraphrase of CAD, but you may also think that these definitions are “image manipulation”. However, there are common and different features between the two fields. This review paper elaborates on these common and different features and introduces the potential of radiomics for cancer diagnosis and treatment by comparing it with CAD.
Literature
1.
go back to reference Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78(1):3–19.CrossRef Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78(1):3–19.CrossRef
2.
go back to reference Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol. 2006;51(13):R5–27.CrossRef Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol. 2006;51(13):R5–27.CrossRef
3.
go back to reference Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Gr. 2007;31(4–5):198–211.CrossRef Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Gr. 2007;31(4–5):198–211.CrossRef
4.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: Extracting more information from medical images using advanced feature analysis. J Cancer. 2012;48:441–6. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: Extracting more information from medical images using advanced feature analysis. J Cancer. 2012;48:441–6.
6.
go back to reference Arimura H, Soufi M. A review on radiomics for personalized medicine in cancer treatment. Med Imaging Technol. 2018;36(2):81–9. Arimura H, Soufi M. A review on radiomics for personalized medicine in cancer treatment. Med Imaging Technol. 2018;36(2):81–9.
7.
go back to reference Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.CrossRef Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.CrossRef
8.
go back to reference Itadani H, Mizuarai S, Kotani H. Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation. Curr Genom. 2008;9(5):349–60.CrossRef Itadani H, Mizuarai S, Kotani H. Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation. Curr Genom. 2008;9(5):349–60.CrossRef
9.
go back to reference Peeken JC, Nüsslin F, Combs SE. “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol. 2017;193(10):767–79.CrossRef Peeken JC, Nüsslin F, Combs SE. “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol. 2017;193(10):767–79.CrossRef
10.
go back to reference Arimura H, Tokunaga C, Yamashita Y, Kuwazuru K. Magnetic resonance image analysis for brain CAD systems with machine learning. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. pp. 258–96.CrossRef Arimura H, Tokunaga C, Yamashita Y, Kuwazuru K. Magnetic resonance image analysis for brain CAD systems with machine learning. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. pp. 258–96.CrossRef
11.
go back to reference Duda RO, Hart PE, Stork DG. Pattern classification, 2nd ed. New York: Wiley-Interscience; 2000. Duda RO, Hart PE, Stork DG. Pattern classification, 2nd ed. New York: Wiley-Interscience; 2000.
12.
go back to reference Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM. Med Phys. 2008;35(12):5799–820.CrossRef Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM. Med Phys. 2008;35(12):5799–820.CrossRef
13.
go back to reference Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 2011;41(6):449–62.CrossRef Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 2011;41(6):449–62.CrossRef
14.
go back to reference Muramatsu C. Overview on subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.CrossRef Muramatsu C. Overview on subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.CrossRef
15.
go back to reference Yamaguchi M. Computer-aided differentiation for pathology images. In: Arimura H, editor. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017. Yamaguchi M. Computer-aided differentiation for pathology images. In: Arimura H, editor. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.
16.
go back to reference Arimura H. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.CrossRef Arimura H. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.CrossRef
17.
go back to reference Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res. 2018;59:1–8 (Epub ahead of print).CrossRef Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res. 2018;59:1–8 (Epub ahead of print).CrossRef
18.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning -data mining, inference, and prediction, 2nd ed. New York: Springer; 2008. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning -data mining, inference, and prediction, 2nd ed. New York: Springer; 2008.
19.
go back to reference Yoo BC, Kim KH, Woo SM, et al. Clinical multi-omics strategies for the effective cancer management. J Proteom. 2017;188:97–106.CrossRef Yoo BC, Kim KH, Woo SM, et al. Clinical multi-omics strategies for the effective cancer management. J Proteom. 2017;188:97–106.CrossRef
20.
go back to reference Suzuki K. Computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. Suzuki K. Computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012.
21.
go back to reference Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, Goldgof DB, Hall LO, Korn R, Zhao B, Schwartz LH, Basu S, Eschrich S, Gatenby RA, Gillies RJ. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27(6):805–23.CrossRef Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, Goldgof DB, Hall LO, Korn R, Zhao B, Schwartz LH, Basu S, Eschrich S, Gatenby RA, Gillies RJ. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27(6):805–23.CrossRef
22.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef
23.
go back to reference Koo TK, Li MY. Erratum to “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research” [J Chiropr Med. 2016;15(2):155–63]. J Chiropr Med. 2017;16(4):346.CrossRef Koo TK, Li MY. Erratum to “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research” [J Chiropr Med. 2016;15(2):155–63]. J Chiropr Med. 2017;16(4):346.CrossRef
24.
go back to reference Kleinbaum DG. Survival analysis: a self-learning text. New York: Springer; 1996.CrossRef Kleinbaum DG. Survival analysis: a self-learning text. New York: Springer; 1996.CrossRef
25.
go back to reference Cox DR. Regression models and life tables (with discussion). J R Stat Soc B. 1972;34(2):187–220. Cox DR. Regression models and life tables (with discussion). J R Stat Soc B. 1972;34(2):187–220.
27.
go back to reference Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–21.CrossRef Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–21.CrossRef
28.
go back to reference Galloway MM. Texture analysis using gray level run lengths. Comput Gr Image Process. 1975;4:172–79.CrossRef Galloway MM. Texture analysis using gray level run lengths. Comput Gr Image Process. 1975;4:172–79.CrossRef
30.
go back to reference Thibault G. Texture indexes and gray level size zone matrix. Application to cell nuclei classification. In: Proc. Pattern Recognition and Information Processing. Minsk, Belarus, pp. 140–145, 2009. Thibault G. Texture indexes and gray level size zone matrix. Application to cell nuclei classification. In: Proc. Pattern Recognition and Information Processing. Minsk, Belarus, pp. 140–145, 2009.
31.
go back to reference Soufi M, Arimura H, Nakamoto T, et al. Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images. Phys Med Eur J Med Phys. 2018;46:32–44. Soufi M, Arimura H, Nakamoto T, et al. Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images. Phys Med Eur J Med Phys. 2018;46:32–44.
32.
go back to reference Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050–62.CrossRef Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050–62.CrossRef
34.
go back to reference Strang G, Nguyen T. Wavelets and filter banks. Wellesley: Wellesley-Cambridge; 1997. Strang G, Nguyen T. Wavelets and filter banks. Wellesley: Wellesley-Cambridge; 1997.
35.
go back to reference Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal Mach Intell. 1989;11(7):674–93.CrossRef Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal Mach Intell. 1989;11(7):674–93.CrossRef
36.
go back to reference Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comp Med Biol. 2007;37(4):486–98.CrossRef Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comp Med Biol. 2007;37(4):486–98.CrossRef
38.
40.
go back to reference Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, Tang Z, Dong D, Kong L, Wang M, Shi D, Tian J. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94.CrossRef Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, Tang Z, Dong D, Kong L, Wang M, Shi D, Tian J. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94.CrossRef
41.
go back to reference JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement (PDF). In: Joint committee for guides in metrology; 2008. JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement (PDF). In: Joint committee for guides in metrology; 2008.
42.
go back to reference Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology. 2009;252(1):263–72.CrossRef Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology. 2009;252(1):263–72.CrossRef
45.
go back to reference Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016;2(4):430–7.CrossRef Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016;2(4):430–7.CrossRef
46.
go back to reference Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater S. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology. 2018;288(2):407–15.CrossRef Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater S. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology. 2018;288(2):407–15.CrossRef
48.
go back to reference Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRef Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRef
49.
go back to reference Jain AK, Duin RPW, Mao J. Statistical pattern recognition [Review]. IEEE Trans Pattern Anal Mach Intell. 2000;22:4–37.CrossRef Jain AK, Duin RPW, Mao J. Statistical pattern recognition [Review]. IEEE Trans Pattern Anal Mach Intell. 2000;22:4–37.CrossRef
50.
go back to reference Chow S, Shao J, Wang H. Sample size calculations in clinical research. Chapman and Hall/CRC biostatistics series, 2nd ed. Boca Raton: CRC; 2008. Chow S, Shao J, Wang H. Sample size calculations in clinical research. Chapman and Hall/CRC biostatistics series, 2nd ed. Boca Raton: CRC; 2008.
57.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef
58.
go back to reference Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.CrossRef Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.CrossRef
59.
go back to reference Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRef Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRef
60.
go back to reference Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018;98:126–46.CrossRef Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018;98:126–46.CrossRef
61.
go back to reference Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
62.
go back to reference Marcus G. Deep learning: a critical appraisal. 2018. arXiv:1801.00631v1. Marcus G. Deep learning: a critical appraisal. 2018. arXiv:1801.00631v1.
64.
go back to reference Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–6.CrossRef Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–6.CrossRef
66.
go back to reference Crispin-Ortuzar M, Apte A, Grkovski M, Oh JH, Lee NY, Schöder H, Humm JL, Deasy JO. Predicting hypoxia status using a combination of contrast-enhanced computed tomography and [18F]-Fluorodeoxyglucose positron emission tomography radiomics features. Radiother Oncol. 2018;127(1):36–42.CrossRef Crispin-Ortuzar M, Apte A, Grkovski M, Oh JH, Lee NY, Schöder H, Humm JL, Deasy JO. Predicting hypoxia status using a combination of contrast-enhanced computed tomography and [18F]-Fluorodeoxyglucose positron emission tomography radiomics features. Radiother Oncol. 2018;127(1):36–42.CrossRef
67.
go back to reference Larue RTHM, Klaassen R, Jochems A, Leijenaar RTH, Hulshof MCCM, van Berge Henegouwen MI, Schreurs WMJ, Sosef MN, van Elmpt W, van Laarhoven HWM, Lambin P. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Acta Oncol. 2018;1:1–7. https://doi.org/10.1080/0284186X.2018.1486039 (Epub ahead of print).CrossRef Larue RTHM, Klaassen R, Jochems A, Leijenaar RTH, Hulshof MCCM, van Berge Henegouwen MI, Schreurs WMJ, Sosef MN, van Elmpt W, van Laarhoven HWM, Lambin P. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Acta Oncol. 2018;1:1–7. https://​doi.​org/​10.​1080/​0284186X.​2018.​1486039 (Epub ahead of print).CrossRef
68.
go back to reference Hou Z, Li S, Ren W, Liu J, Yan J, Wan S. Radiomic analysis in T2W and SPAIR T2W MRI: predict treatment response to chemoradiotherapy in esophageal squamous cell carcinoma. J Thorac Dis. 2018;10(4):2256–67.CrossRef Hou Z, Li S, Ren W, Liu J, Yan J, Wan S. Radiomic analysis in T2W and SPAIR T2W MRI: predict treatment response to chemoradiotherapy in esophageal squamous cell carcinoma. J Thorac Dis. 2018;10(4):2256–67.CrossRef
69.
go back to reference Gangeh MJ, Hashim A, Giles A, Sannachi L, Czarnota GJ. Computer aided prognosis for cell death categorization and prediction in vivo using quantitative ultrasound and machine learning techniques. Med Phys. 2016;43(12):6439.CrossRef Gangeh MJ, Hashim A, Giles A, Sannachi L, Czarnota GJ. Computer aided prognosis for cell death categorization and prediction in vivo using quantitative ultrasound and machine learning techniques. Med Phys. 2016;43(12):6439.CrossRef
72.
go back to reference Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology. 2018;287(3):732–47.CrossRef Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology. 2018;287(3):732–47.CrossRef
73.
go back to reference El Naqa I. Biomedical informatics and panomics for evidence-based radiation therapy. Wiley Interdiscip Rev Data Min Knowl Discov. 2014;4:327–40.CrossRef El Naqa I. Biomedical informatics and panomics for evidence-based radiation therapy. Wiley Interdiscip Rev Data Min Knowl Discov. 2014;4:327–40.CrossRef
74.
go back to reference Peeken JC, Bernhofer M, Wiestler B, Goldberg T, Cremers D, Rost B, Wilkens JJ, Combs SE, Nüsslin F. Radiomics in radiooncology—challenging the medical physicist. Phys Med Eur J Med Phys. 2018;48:27–36. Peeken JC, Bernhofer M, Wiestler B, Goldberg T, Cremers D, Rost B, Wilkens JJ, Combs SE, Nüsslin F. Radiomics in radiooncology—challenging the medical physicist. Phys Med Eur J Med Phys. 2018;48:27–36.
Metadata
Title
Potentials of radiomics for cancer diagnosis and treatment in comparison with computer-aided diagnosis
Authors
Hidetaka Arimura
Mazen Soufi
Kenta Ninomiya
Hidemi Kamezawa
Masahiro Yamada
Publication date
01-12-2018
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 4/2018
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-018-0486-x

Other articles of this Issue 4/2018

Radiological Physics and Technology 4/2018 Go to the issue

Acknowledgments

Acknowledgment