Skip to main content
Top
Published in: Strahlentherapie und Onkologie 10/2017

01-10-2017 | Review Article

“Radio-oncomics”

The potential of radiomics in radiation oncology

Authors: Jan Caspar Peeken, Fridtjof Nüsslin, Stephanie E. Combs

Published in: Strahlentherapie und Onkologie | Issue 10/2017

Login to get access

Abstract

Introduction

Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow.

Methods

After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created.

Results

Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information (“radiogenomics”) and could be used for tumor characterization.

Discussion

Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches.

Conclusion

This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.
Literature
1.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 4:441–446CrossRef Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 4:441–446CrossRef
2.
go back to reference Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 3:654–663CrossRef Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 3:654–663CrossRef
3.
go back to reference Rosenstein BS, West CM, Bentzen SM, Alsner J, Andreassen CN, Azria D et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol 4:709–713CrossRef Rosenstein BS, West CM, Bentzen SM, Alsner J, Andreassen CN, Azria D et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol 4:709–713CrossRef
4.
go back to reference Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 2:232–241CrossRef Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 2:232–241CrossRef
5.
go back to reference Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 9:1234–1248CrossRef Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 9:1234–1248CrossRef
6.
go back to reference Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S et al (2017) Radiogenomics of Glioblastoma: machine learning – based classification of molecular characteristics by using Multiparametric and Multiregional MR imaging features. Radiology 0:1–12 Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S et al (2017) Radiogenomics of Glioblastoma: machine learning – based classification of molecular characteristics by using Multiparametric and Multiregional MR imaging features. Radiology 0:1–12
7.
go back to reference Stoyanova R, Pollack A, Takhar M, Lynne C, Parra N, Lam LLC et al (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 33:53362–53376CrossRef Stoyanova R, Pollack A, Takhar M, Lynne C, Parra N, Lam LLC et al (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 33:53362–53376CrossRef
8.
go back to reference Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RTH, Hermann G et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 3:345–350CrossRef Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RTH, Hermann G et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 3:345–350CrossRef
9.
go back to reference Court LE, Fave X, Mackin D, Lee J, Yang J, Zhang L (2016) Computational resources for radiomics. Transl Cancer Res 4:340–348CrossRef Court LE, Fave X, Mackin D, Lee J, Yang J, Zhang L (2016) Computational resources for radiomics. Transl Cancer Res 4:340–348CrossRef
10.
go back to reference Narang S, Lehrer M, Yang D, Lee J, Rao A (2016) Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 4:383–397CrossRef Narang S, Lehrer M, Yang D, Lee J, Rao A (2016) Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 4:383–397CrossRef
11.
go back to reference Yip SSF, Aerts HJWL (2016) Applications and limitations of radiomics. Phys Med Biol 13:R150–66CrossRef Yip SSF, Aerts HJWL (2016) Applications and limitations of radiomics. Phys Med Biol 13:R150–66CrossRef
12.
go back to reference Chalkidou A, O’Doherty MJ, Marsden PK, Wahl R, Jacene H, Kasamon Y et al (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLOS ONE 5:e0124165CrossRef Chalkidou A, O’Doherty MJ, Marsden PK, Wahl R, Jacene H, Kasamon Y et al (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLOS ONE 5:e0124165CrossRef
13.
go back to reference Cunliffe A, Armato SG, Castillo R, Pham N, Guerrero T, Al-Hallaq HA et al (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 5:1048–1056CrossRef Cunliffe A, Armato SG, Castillo R, Pham N, Guerrero T, Al-Hallaq HA et al (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 5:1048–1056CrossRef
14.
go back to reference Chen X, Bergom C, Currey AD, Kelly TR, Edwin C, Montes A et al (2016) Quantitative computed tomography for radiation-induced changes in normal breast tissue during partial breast irradiation. Int J Radiat Oncol 2:S191–192CrossRef Chen X, Bergom C, Currey AD, Kelly TR, Edwin C, Montes A et al (2016) Quantitative computed tomography for radiation-induced changes in normal breast tissue during partial breast irradiation. Int J Radiat Oncol 2:S191–192CrossRef
15.
go back to reference Scalco E, Fiorino C, Cattaneo GM, Sanguineti G, Rizzo G (2013) Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy. Radiother Oncol 3:384–387CrossRef Scalco E, Fiorino C, Cattaneo GM, Sanguineti G, Rizzo G (2013) Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy. Radiother Oncol 3:384–387CrossRef
16.
go back to reference Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A (2016) Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 1:148CrossRef Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A (2016) Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 1:148CrossRef
17.
go back to reference Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R et al (2009) Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol 2:618–625CrossRef Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R et al (2009) Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol 2:618–625CrossRef
18.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 2:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 2:563–577CrossRef
19.
go back to reference Bhandari V, Patel P, Gurjar O, Gupta K (2014) Impact of repeat computerized tomography replans in the radiation therapy of head and neck cancers. J Med Phys 3:164CrossRef Bhandari V, Patel P, Gurjar O, Gupta K (2014) Impact of repeat computerized tomography replans in the radiation therapy of head and neck cancers. J Med Phys 3:164CrossRef
20.
go back to reference van Timmeren JE, Leijenaar RTH, van Elmpt W, Lambin P (2016) Interchangeability of a radiomic signature between conventional and weekly cone beam computed tomography allowing response prediction in non-small cell lung cancer. Int J Radiat Oncol 2:S193CrossRef van Timmeren JE, Leijenaar RTH, van Elmpt W, Lambin P (2016) Interchangeability of a radiomic signature between conventional and weekly cone beam computed tomography allowing response prediction in non-small cell lung cancer. Int J Radiat Oncol 2:S193CrossRef
21.
go back to reference Paul J, Gore EM, Li A (2016) Quantitative computed tomography for tumor response assessment during radiation therapy for lung cancer. Int J Radiat Oncol 2:S193CrossRef Paul J, Gore EM, Li A (2016) Quantitative computed tomography for tumor response assessment during radiation therapy for lung cancer. Int J Radiat Oncol 2:S193CrossRef
22.
go back to reference Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 12:6784–6797CrossRef Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 12:6784–6797CrossRef
23.
go back to reference Combs SE, Nüsslin F, Wilkens JJ (2016) Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 4:209–215CrossRef Combs SE, Nüsslin F, Wilkens JJ (2016) Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 4:209–215CrossRef
24.
go back to reference Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP et al (2016) Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. Eur Radiol 27(7):2916–2927CrossRefPubMed Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP et al (2016) Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. Eur Radiol 27(7):2916–2927CrossRefPubMed
25.
go back to reference Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M, Rodrigues G et al (2016) Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol 5:1121–1128CrossRef Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M, Rodrigues G et al (2016) Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol 5:1121–1128CrossRef
26.
go back to reference Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 1:19–26CrossRef Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 1:19–26CrossRef
27.
go back to reference Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. doi:10.1038/ncomms5006 Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. doi:10.​1038/​ncomms5006
28.
go back to reference Parmar C, Leijenaar RTH, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D et al (2015) Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep. doi:10.1038/srep11044 Parmar C, Leijenaar RTH, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D et al (2015) Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep. doi:10.​1038/​srep11044
29.
go back to reference Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. doi:10.3389/fonc.2015.00272 Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. doi:10.​3389/​fonc.​2015.​00272
30.
go back to reference Zhou Z, Folkert MR, Iyengar P, Zhang Y, Westover KD, Wang J (2016) Predicting distant failure in lung stereotactic body radiation therapy using multiobjective radiomics model. Int J Radiat Oncol Biol Phys 2:S193–194CrossRef Zhou Z, Folkert MR, Iyengar P, Zhang Y, Westover KD, Wang J (2016) Predicting distant failure in lung stereotactic body radiation therapy using multiobjective radiomics model. Int J Radiat Oncol Biol Phys 2:S193–194CrossRef
31.
go back to reference Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 3:480–486CrossRef Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 3:480–486CrossRef
32.
go back to reference Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S et al (2013) Spatial-temporal [18 F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys 5:1375–1382CrossRef Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S et al (2013) Spatial-temporal [18 F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys 5:1375–1382CrossRef
33.
go back to reference Zhang H, Tan S, Chen W, Kligerman S, Kim G, D’Souza WD et al (2014) Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. Int J Radiat Oncol Biol Phys 1:195–203CrossRef Zhang H, Tan S, Chen W, Kligerman S, Kim G, D’Souza WD et al (2014) Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. Int J Radiat Oncol Biol Phys 1:195–203CrossRef
34.
go back to reference King AD, Chow K‑K, Yu K‑H, Mo FKF, Yeung DKW, Yuan J et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2:531–538. doi:10.1148/radiol.12120167 CrossRef King AD, Chow K‑K, Yu K‑H, Mo FKF, Yeung DKW, Yuan J et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2:531–538. doi:10.​1148/​radiol.​12120167 CrossRef
35.
go back to reference Leijenaar RTH, Carvalho S, Hoebers FJP, et al (2015) External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol (Madr) 54:1423–1429. doi:10.3109/0284186X.2015.1061214 Leijenaar RTH, Carvalho S, Hoebers FJP, et al (2015) External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol (Madr) 54:1423–1429. doi:10.​3109/​0284186X.​2015.​1061214
36.
go back to reference Kanwar A, Mohamed ASR, Court LE, Zhang L, Marai GE, Canahuate G et al (2016) Development of a predictive quantitative contrast computed tomography-based feature (Radiomics) profile for local recurrence in oropharyngeal cancers. Int J Radiat Oncol 2:S191CrossRef Kanwar A, Mohamed ASR, Court LE, Zhang L, Marai GE, Canahuate G et al (2016) Development of a predictive quantitative contrast computed tomography-based feature (Radiomics) profile for local recurrence in oropharyngeal cancers. Int J Radiat Oncol 2:S191CrossRef
37.
go back to reference Jansen JF, Lu Y, Gupta G, et al (2016) Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer. World J Radiol 8:90–97. doi:10.4329/wjr.v8.i1.90 Jansen JF, Lu Y, Gupta G, et al (2016) Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer. World J Radiol 8:90–97. doi:10.​4329/​wjr.​v8.​i1.​90
38.
go back to reference Vallieres M, Kumar A, Sultanem K, El Naqa I (2013) FDG-PET image-derived features can determine HPV status in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2:467CrossRef Vallieres M, Kumar A, Sultanem K, El Naqa I (2013) FDG-PET image-derived features can determine HPV status in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2:467CrossRef
39.
go back to reference Nie K, Shi L, Chen Q, Hu X, Jabbour S, Yue N et al (2016) Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI. Clin Cancer Res 22(21):5256–5264CrossRefPubMed Nie K, Shi L, Chen Q, Hu X, Jabbour S, Yue N et al (2016) Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI. Clin Cancer Res 22(21):5256–5264CrossRefPubMed
40.
go back to reference Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 11:6725CrossRef Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 11:6725CrossRef
41.
go back to reference Rios Velazquez E, Meier R, Dunn WD, Alexander B, Wiest R, Bauer S et al (2015) Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features. Sci Rep. doi:10.1038/srep16822 Rios Velazquez E, Meier R, Dunn WD, Alexander B, Wiest R, Bauer S et al (2015) Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features. Sci Rep. doi:10.​1038/​srep16822
43.
go back to reference McGarry SD, Hurrell SL, Kaczmarowski AL, Cochran EJ, Connelly J, Rand SD et al (2016) Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy. Tomography 3:223–228 McGarry SD, Hurrell SL, Kaczmarowski AL, Cochran EJ, Connelly J, Rand SD et al (2016) Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy. Tomography 3:223–228
44.
go back to reference Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur Radiol:. doi:10.1007/s00330-017-4815-y PubMed Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur Radiol:. doi:10.​1007/​s00330-017-4815-y PubMed
45.
go back to reference Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S et al (2016) Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 1:133–141CrossRef Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S et al (2016) Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 1:133–141CrossRef
46.
go back to reference Gnep K, Fargeas A, Gutiérrez-Carvajal RE, Commandeur F, Mathieu R, Ospina JD et al (2016) Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging 1:103–117 Gnep K, Fargeas A, Gutiérrez-Carvajal RE, Commandeur F, Mathieu R, Ospina JD et al (2016) Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging 1:103–117
47.
go back to reference Obeid J‑P, Stoyanova R, Kwon D, Patel M, Padgett K, Slingerland J et al (2016) Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat. Clin Transl Oncol 19(2):211–218CrossRefPubMed Obeid J‑P, Stoyanova R, Kwon D, Patel M, Padgett K, Slingerland J et al (2016) Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat. Clin Transl Oncol 19(2):211–218CrossRefPubMed
48.
go back to reference Fox MJ, Gibbs P, Pickles MD (2016) Minkowski functionals: An MRI texture analysis tool for determination of the aggressiveness of breast cancer. J Magn Reson Imaging 4:903–910CrossRef Fox MJ, Gibbs P, Pickles MD (2016) Minkowski functionals: An MRI texture analysis tool for determination of the aggressiveness of breast cancer. J Magn Reson Imaging 4:903–910CrossRef
49.
go back to reference Parra NA, Maudsley AA, Gupta RK, Ishkanian F, Huang K, Walker GR et al (2014) Volumetric spectroscopic imaging of glioblastoma multiforme radiation treatment volumes. Int J Radiat Oncol Biol Phys 2:376–384CrossRef Parra NA, Maudsley AA, Gupta RK, Ishkanian F, Huang K, Walker GR et al (2014) Volumetric spectroscopic imaging of glioblastoma multiforme radiation treatment volumes. Int J Radiat Oncol Biol Phys 2:376–384CrossRef
50.
go back to reference Moran MS (2015) Radiation therapy in the locoregional treatment of triple-negative breast cancer. Lancet Oncol 16:e113–22CrossRefPubMed Moran MS (2015) Radiation therapy in the locoregional treatment of triple-negative breast cancer. Lancet Oncol 16:e113–22CrossRefPubMed
51.
go back to reference Maas M, Beets-Tan RGH, Lambregts DMJ, Lammering G, Nelemans PJ, Engelen SME et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 35:4633–4640CrossRef Maas M, Beets-Tan RGH, Lambregts DMJ, Lammering G, Nelemans PJ, Engelen SME et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 35:4633–4640CrossRef
52.
go back to reference Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep. doi:10.1038/srep13087 Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep. doi:10.​1038/​srep13087
53.
go back to reference Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW (2014) Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol 1:147–152CrossRef Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW (2014) Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol 1:147–152CrossRef
54.
go back to reference Gutman DA, Cooper LAD, Hwang SN, Holder CA, Gao J, Aurora TD et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2:560–569CrossRef Gutman DA, Cooper LAD, Hwang SN, Holder CA, Gao J, Aurora TD et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2:560–569CrossRef
Metadata
Title
“Radio-oncomics”
The potential of radiomics in radiation oncology
Authors
Jan Caspar Peeken
Fridtjof Nüsslin
Stephanie E. Combs
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 10/2017
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-017-1175-0

Other articles of this Issue 10/2017

Strahlentherapie und Onkologie 10/2017 Go to the issue