Skip to main content
Top
Published in: Radiological Physics and Technology 2/2018

01-06-2018

Overview on subjective similarity of images for content-based medical image retrieval

Author: Chisako Muramatsu

Published in: Radiological Physics and Technology | Issue 2/2018

Login to get access

Abstract

Computer-aided diagnosis systems for assisting the classification of various diseases have the potential to improve radiologists’ diagnostic accuracy and efficiency, as reported in several studies. Conventional systems generally provide the probabilities of disease types in terms of numerical values, a method that may not be efficient for radiologists who are trained by reading a large number of images. Presentation of reference images similar to those of a new case being diagnosed can supplement the probability outputs based on computerized analysis as an intuitive guide, and it can assist radiologists in their diagnosis, reporting, and treatment planning. Many studies on content-based medical image retrievals have been reported on. For retrieval of perceptually similar and diagnostically relevant images, incorporation of perceptual similarity data by radiologists has been suggested. In this paper, studies on image retrieval methods are reviewed with a special focus on quantification, utilization, and the evaluation of subjective similarities between pairs of images.
Literature
1.
go back to reference Muller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int J Med Inf. 2004;73:1–23.CrossRef Muller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int J Med Inf. 2004;73:1–23.CrossRef
2.
go back to reference Long LR, Antani S, Deserno TM, Thoma GR. Content-based image retrieval in medicine: retrospective assessment, state of the art, and future directions. Int J Health Inf Syst Inform. 2009;4(1):1–16.CrossRef Long LR, Antani S, Deserno TM, Thoma GR. Content-based image retrieval in medicine: retrospective assessment, state of the art, and future directions. Int J Health Inf Syst Inform. 2009;4(1):1–16.CrossRef
3.
go back to reference Akgul CB, Rubin DL, Napel S, Beaulieu CF, Hayit G, Acar B. Content-based image retrieval in radiology: current status and future directions. J Digit Imaging. 2011;24(2):208–22.CrossRefPubMed Akgul CB, Rubin DL, Napel S, Beaulieu CF, Hayit G, Acar B. Content-based image retrieval in radiology: current status and future directions. J Digit Imaging. 2011;24(2):208–22.CrossRefPubMed
4.
go back to reference Kumar A, Dim J, Cai W, Fulham M, Feng D. Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging. 2013;26:1025–39.CrossRefPubMedPubMedCentral Kumar A, Dim J, Cai W, Fulham M, Feng D. Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging. 2013;26:1025–39.CrossRefPubMedPubMedCentral
5.
go back to reference Li Z, Zhang X, Muller H, Zhang S. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal. 2018;43:66–84.CrossRefPubMed Li Z, Zhang X, Muller H, Zhang S. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal. 2018;43:66–84.CrossRefPubMed
6.
go back to reference Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Sys Manuf Cyber. 1973;SMC-3(6):610–21.CrossRef Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Sys Manuf Cyber. 1973;SMC-3(6):610–21.CrossRef
7.
go back to reference Tang X. Texture information in run-length matrices. IEEE Image Process. 1998;7(11):1602–9.CrossRef Tang X. Texture information in run-length matrices. IEEE Image Process. 1998;7(11):1602–9.CrossRef
8.
go back to reference Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am. 1985;2(7):1160–9.CrossRef Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am. 1985;2(7):1160–9.CrossRef
9.
go back to reference Cross GR, Jain AK. Markov random field texture models. IEEE Trans Pat Anal Mach Intel. 1983; PAMI-5(1):25–39.CrossRef Cross GR, Jain AK. Markov random field texture models. IEEE Trans Pat Anal Mach Intel. 1983; PAMI-5(1):25–39.CrossRef
10.
go back to reference Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pat Anal Mach Intel. 2002;24(7):971–87.CrossRef Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pat Anal Mach Intel. 2002;24(7):971–87.CrossRef
11.
go back to reference Huo Z, Giger ML, Vyborny CJ, Bick U, Lu P, Wolverton DE, Schmidt RA. Analysis of spiculation in the computerized classification of mammographic masses. Med Phys. 1995;22:1569–79.CrossRefPubMed Huo Z, Giger ML, Vyborny CJ, Bick U, Lu P, Wolverton DE, Schmidt RA. Analysis of spiculation in the computerized classification of mammographic masses. Med Phys. 1995;22:1569–79.CrossRefPubMed
12.
go back to reference Kobatake H, Hashimoto S. Convergence index filter for vector fields. IEEE Trans Image Process. 1999;8(8):1029–38.CrossRefPubMed Kobatake H, Hashimoto S. Convergence index filter for vector fields. IEEE Trans Image Process. 1999;8(8):1029–38.CrossRefPubMed
13.
go back to reference Bunke H, Irniger C, Neuhaus M. Graph matching – challenges and potential solutions. Int Conf Image Anal Process. 2005;LNCS3617:1–10. Bunke H, Irniger C, Neuhaus M. Graph matching – challenges and potential solutions. Int Conf Image Anal Process. 2005;LNCS3617:1–10.
14.
go back to reference Sharma H, Alekseychuk A, Leskovsky P, Hellwich O, Anand RS, Zerbe N, Hufnagl P. Determining similarity in histological images using graph-teoretic description and matching methods for content-based image retrieval in medical diagnostics. Diagn Pathol. 2012;7:134.CrossRefPubMedPubMedCentral Sharma H, Alekseychuk A, Leskovsky P, Hellwich O, Anand RS, Zerbe N, Hufnagl P. Determining similarity in histological images using graph-teoretic description and matching methods for content-based image retrieval in medical diagnostics. Diagn Pathol. 2012;7:134.CrossRefPubMedPubMedCentral
15.
go back to reference Kumar A, Kim J, Wen L, Fulham M, Feng D. A graph-based approach for the retrieval of multi-modality medical images. Med Image Anal. 2014;18:330–42.CrossRefPubMed Kumar A, Kim J, Wen L, Fulham M, Feng D. A graph-based approach for the retrieval of multi-modality medical images. Med Image Anal. 2014;18:330–42.CrossRefPubMed
17.
go back to reference Giger ML, Huo Z, Vyborny CJ, Lan L, Bonta I, Horsch K, Nishikawa RM, Rosenbourgh I. Intelligent CAD workstation for breast imaging using similarity to known lesions and multiple visual prompt aids. Proc SPIE Med Imaging. 2002;4684:78–73. Giger ML, Huo Z, Vyborny CJ, Lan L, Bonta I, Horsch K, Nishikawa RM, Rosenbourgh I. Intelligent CAD workstation for breast imaging using similarity to known lesions and multiple visual prompt aids. Proc SPIE Med Imaging. 2002;4684:78–73.
18.
go back to reference Nakagawa T, Hara T, Fujita H, Iwase T, Endo T. Image retrieval system of mammographic masses by using local pattern matching technique. In: Peitgen HO, editor. Digital Mammography. Berlin: Springer; 2003. pp. 562–5.CrossRef Nakagawa T, Hara T, Fujita H, Iwase T, Endo T. Image retrieval system of mammographic masses by using local pattern matching technique. In: Peitgen HO, editor. Digital Mammography. Berlin: Springer; 2003. pp. 562–5.CrossRef
19.
go back to reference Muramatsu C, Li Q, Suzuki K, Schmidt RA, Shiraishi J, Newstead GM, Doi K. Investigation of psychophysical measure for evaluation of similar images for mammographic masses: preliminary results. Med Phys. 2005;32:2295–304.CrossRefPubMed Muramatsu C, Li Q, Suzuki K, Schmidt RA, Shiraishi J, Newstead GM, Doi K. Investigation of psychophysical measure for evaluation of similar images for mammographic masses: preliminary results. Med Phys. 2005;32:2295–304.CrossRefPubMed
20.
go back to reference Alto H, Rangayyan RM, Desautels JEL. Content-based retrieval and analysis of mammographic masses. J Electron Imaging. 2005;14(2):023016.CrossRef Alto H, Rangayyan RM, Desautels JEL. Content-based retrieval and analysis of mammographic masses. J Electron Imaging. 2005;14(2):023016.CrossRef
21.
go back to reference Zheng B, Lu A, Hardesty LA, Sumkin JH, Hakim CM, Ganott MA, Gur D. A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment. Med Phys. 2006;33:111–7.CrossRefPubMed Zheng B, Lu A, Hardesty LA, Sumkin JH, Hakim CM, Ganott MA, Gur D. A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment. Med Phys. 2006;33:111–7.CrossRefPubMed
22.
go back to reference Kinoshita SK, Marques PMA, Pereira R, Rodrigues JAH, Rangayyan RM. Content-based retrieval of mammograms using visual features related to breast density patterns. J Digit Imaging. 2007;20:172–90.CrossRefPubMedPubMedCentral Kinoshita SK, Marques PMA, Pereira R, Rodrigues JAH, Rangayyan RM. Content-based retrieval of mammograms using visual features related to breast density patterns. J Digit Imaging. 2007;20:172–90.CrossRefPubMedPubMedCentral
23.
go back to reference Nakayama R, Abe H, Shiraishi J, Doi K. Evaluatino of objective similarity measures for selecting similar images of mammographic lesions. J Digit Imaging. 2011;24:75–85.CrossRefPubMed Nakayama R, Abe H, Shiraishi J, Doi K. Evaluatino of objective similarity measures for selecting similar images of mammographic lesions. J Digit Imaging. 2011;24:75–85.CrossRefPubMed
24.
go back to reference Wei CH, Chen SY, Liu X. Mammogram retrieval on similar mass lesions. Comput Methods Prog Biomed. 2012;106(3):234–48.CrossRef Wei CH, Chen SY, Liu X. Mammogram retrieval on similar mass lesions. Comput Methods Prog Biomed. 2012;106(3):234–48.CrossRef
25.
go back to reference Liu J, Zhang S, Liu W, Zhang X, Metaxas DN. Scalable mammogram retrieval using anchor graph hashing. In: IEEE International symposium on biomedical imaging, ISBI 2014; pp 898–901. Liu J, Zhang S, Liu W, Zhang X, Metaxas DN. Scalable mammogram retrieval using anchor graph hashing. In: IEEE International symposium on biomedical imaging, ISBI 2014; pp 898–901.
26.
go back to reference Jaing M, Zhang S, Li H, Metazas DN. Computer-aided diagnosis of mammographic masses using scalable image retrieval. IEEE Trans Biomed Eng. 2015;62(2):783–92.CrossRef Jaing M, Zhang S, Li H, Metazas DN. Computer-aided diagnosis of mammographic masses using scalable image retrieval. IEEE Trans Biomed Eng. 2015;62(2):783–92.CrossRef
27.
go back to reference Bedo MVN, Pereira dos Santos D, Ponciano-Silva M, Marques PMA, Ferreira de Carvalho APL, Traina C. Endowing a content-based medical image retrieval system with perceptual similarity using ensemble strategy. J Digit Imaging. 2016;29:22–37.CrossRefPubMed Bedo MVN, Pereira dos Santos D, Ponciano-Silva M, Marques PMA, Ferreira de Carvalho APL, Traina C. Endowing a content-based medical image retrieval system with perceptual similarity using ensemble strategy. J Digit Imaging. 2016;29:22–37.CrossRefPubMed
28.
go back to reference Sklansky J, Tao EY, Bazargan M, Ornes CJ, Murchison RC, Teklehaimanot S. Computer-aided, case-based diagnosis of mammographic regions of interest containing microcalcifications. Acad Radiol. 2000;7:395–405.CrossRefPubMed Sklansky J, Tao EY, Bazargan M, Ornes CJ, Murchison RC, Teklehaimanot S. Computer-aided, case-based diagnosis of mammographic regions of interest containing microcalcifications. Acad Radiol. 2000;7:395–405.CrossRefPubMed
29.
go back to reference El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to content-based image retrieval: Application to digital mammography. IEEE Trans Med Imaging. 2004;23(10):1233–44.CrossRefPubMed El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to content-based image retrieval: Application to digital mammography. IEEE Trans Med Imaging. 2004;23(10):1233–44.CrossRefPubMed
30.
go back to reference Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Doi K. Investigation of psyhophysical similarity measures for selection of similar images in the diagnosis of clustered microcalcifications on mammograms. Med Phys. 2008;35:5695–702.CrossRefPubMed Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Doi K. Investigation of psyhophysical similarity measures for selection of similar images in the diagnosis of clustered microcalcifications on mammograms. Med Phys. 2008;35:5695–702.CrossRefPubMed
31.
go back to reference Kuo WJ, Chang RF, Lee CC, Moon WK, Chen DR. Retrieval technique for the diagnosis of solid breast tumors on sonogram. Ultrasound Med Biol. 2002;28(7):903–9.CrossRefPubMed Kuo WJ, Chang RF, Lee CC, Moon WK, Chen DR. Retrieval technique for the diagnosis of solid breast tumors on sonogram. Ultrasound Med Biol. 2002;28(7):903–9.CrossRefPubMed
32.
go back to reference Cho H, Hadjiiski L, Sahiner B, Chan HP, Helvie M, Paramagul C, Nees AV. Similarity evaluation in content-based image retrieval (CBIR) CADx system for characterization of breast masses on ultrasound images. Med Phys. 2011;38(4):1820–31.CrossRefPubMedPubMedCentral Cho H, Hadjiiski L, Sahiner B, Chan HP, Helvie M, Paramagul C, Nees AV. Similarity evaluation in content-based image retrieval (CBIR) CADx system for characterization of breast masses on ultrasound images. Med Phys. 2011;38(4):1820–31.CrossRefPubMedPubMedCentral
33.
go back to reference Aisen AM, Broderick LS, Winer-Muram H, Brodley CE, Kak AC, Pavlopoulou C, Dy J, Shyu CR, Marchiori A. Automated storage and retrieval of thin-section CT images to assist diagnosis: System Description and preliminary assessment. Radiology. 2003;228:265–70.CrossRefPubMed Aisen AM, Broderick LS, Winer-Muram H, Brodley CE, Kak AC, Pavlopoulou C, Dy J, Shyu CR, Marchiori A. Automated storage and retrieval of thin-section CT images to assist diagnosis: System Description and preliminary assessment. Radiology. 2003;228:265–70.CrossRefPubMed
34.
go back to reference Li Q, Li F, Shiraishi J, Katsuragawa S, Sone S, Doi K. Investigation of new psyhophysical measures for evaluation of similar images on thoracic CT for distinction between benign and malignant nodules. Med Phys. 2003;30:2584–93.CrossRefPubMed Li Q, Li F, Shiraishi J, Katsuragawa S, Sone S, Doi K. Investigation of new psyhophysical measures for evaluation of similar images on thoracic CT for distinction between benign and malignant nodules. Med Phys. 2003;30:2584–93.CrossRefPubMed
35.
go back to reference Kawata Y, Niki N, Ohmatsu H, Moriyama N. Example-based assisting approach for pulmonary nodule classification in three-dimensional thoracic computed tomography images. Acad Radiol. 2003;10:1402–15.CrossRefPubMed Kawata Y, Niki N, Ohmatsu H, Moriyama N. Example-based assisting approach for pulmonary nodule classification in three-dimensional thoracic computed tomography images. Acad Radiol. 2003;10:1402–15.CrossRefPubMed
36.
37.
go back to reference Wei G, Cao H, Ma H, Qi S, Qian W, Ma Z. Content-based image retrieval for lung nodule classification using texture features and learned distance metric. J Med Syst. 2018;42:13.CrossRef Wei G, Cao H, Ma H, Qi S, Qian W, Ma Z. Content-based image retrieval for lung nodule classification using texture features and learned distance metric. J Med Syst. 2018;42:13.CrossRef
38.
go back to reference Depeursinge A, Varagas A, Gaillard F, Platon A, Geissbuhler A, Poletti PA, Muller H. Case-based lung image categorization and retrieval for interstitial lung diseases clinical workflows. Int J CARS. 2012;7:97–110.CrossRef Depeursinge A, Varagas A, Gaillard F, Platon A, Geissbuhler A, Poletti PA, Muller H. Case-based lung image categorization and retrieval for interstitial lung diseases clinical workflows. Int J CARS. 2012;7:97–110.CrossRef
39.
go back to reference Bugatti PH, Kaster DS, Pociano-Silva M, Traina C Jr. Marques PMA, Traina AJM. PRosPer: perceptual similarity queries in medical CBIR systems through user profiles. Comput Bio Med. 2014;45:8–19.CrossRef Bugatti PH, Kaster DS, Pociano-Silva M, Traina C Jr. Marques PMA, Traina AJM. PRosPer: perceptual similarity queries in medical CBIR systems through user profiles. Comput Bio Med. 2014;45:8–19.CrossRef
40.
go back to reference Xu J, Faruque J, Beaulieu C, Rubin D, Napel S. A comprehensive descriptor of shape: Method and application to content-based retrieval of similar appearing lesions in medical images. J Digit Imaging. 2012;25:121–8.CrossRefPubMed Xu J, Faruque J, Beaulieu C, Rubin D, Napel S. A comprehensive descriptor of shape: Method and application to content-based retrieval of similar appearing lesions in medical images. J Digit Imaging. 2012;25:121–8.CrossRefPubMed
41.
go back to reference Yang W, Lu Z, Yu M, Huang M, Feng Q, Chen W. Content-based retrieval of focal liver lesions using bag-of-visual-words representations of single- and multiphase contrast-enhanced CT images. J Digit Imaging. 2012;25:708–19.CrossRefPubMedPubMedCentral Yang W, Lu Z, Yu M, Huang M, Feng Q, Chen W. Content-based retrieval of focal liver lesions using bag-of-visual-words representations of single- and multiphase contrast-enhanced CT images. J Digit Imaging. 2012;25:708–19.CrossRefPubMedPubMedCentral
42.
go back to reference Dankerl P, Cavallaro A, Tsymbal A, Costa MJ, Suehling M, Janka R, Uder M, Hammon M. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans. Acad Radiol. 2013;20:1526–34.CrossRefPubMed Dankerl P, Cavallaro A, Tsymbal A, Costa MJ, Suehling M, Janka R, Uder M, Hammon M. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans. Acad Radiol. 2013;20:1526–34.CrossRefPubMed
43.
go back to reference Roy S, Chi Y, Liu J, Venkatesh SK, Brown MS. Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions. IEEE Trans Biomed Eng. 2014;61(11):2768–78.CrossRefPubMed Roy S, Chi Y, Liu J, Venkatesh SK, Brown MS. Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions. IEEE Trans Biomed Eng. 2014;61(11):2768–78.CrossRefPubMed
44.
go back to reference Spanier AB, Caplan N, Sosna J, Acar B, Joskowicz L. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotation. Int J CARS. 2018;13:165–74.CrossRef Spanier AB, Caplan N, Sosna J, Acar B, Joskowicz L. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotation. Int J CARS. 2018;13:165–74.CrossRef
45.
go back to reference Yang W, Feng Q, Yu M, Lu Z, Gao Y. Content-based retrieval of brain tumor in contrast-enhanced MRI images using tumor margin information and learned distance metric. Med Phys. 2012;39(11):6929–42.CrossRefPubMed Yang W, Feng Q, Yu M, Lu Z, Gao Y. Content-based retrieval of brain tumor in contrast-enhanced MRI images using tumor margin information and learned distance metric. Med Phys. 2012;39(11):6929–42.CrossRefPubMed
46.
go back to reference Faria AV, Oishi K, Yoshida S, Hillis A, Miller ML, Mori S. Content-based image retrieval for brain MRI: An image-searching engine and population-based analysis to utilize past clinical data for future diagnosis. NeuroImage Clin. 2015;7:367–76.CrossRefPubMedPubMedCentral Faria AV, Oishi K, Yoshida S, Hillis A, Miller ML, Mori S. Content-based image retrieval for brain MRI: An image-searching engine and population-based analysis to utilize past clinical data for future diagnosis. NeuroImage Clin. 2015;7:367–76.CrossRefPubMedPubMedCentral
47.
go back to reference Zaki WMDW., Fauzi MFA, Besar R. Retrieval of intracranial hemorrhages in computed tomography brain images using binary coherent vector. J Electron Imaging. 2010;19(4):043021.CrossRef Zaki WMDW., Fauzi MFA, Besar R. Retrieval of intracranial hemorrhages in computed tomography brain images using binary coherent vector. J Electron Imaging. 2010;19(4):043021.CrossRef
48.
go back to reference Chaum E, Karnowski TP, Covindasamy VP, Abdelrahman M, Tobin KW. Automated diagnosis of retinopathy by content-based image retrieval. Retina. 2008;28:1463–77.CrossRefPubMed Chaum E, Karnowski TP, Covindasamy VP, Abdelrahman M, Tobin KW. Automated diagnosis of retinopathy by content-based image retrieval. Retina. 2008;28:1463–77.CrossRefPubMed
49.
go back to reference Quellec G, Lamard M, Cazuguel G, Roux C, Cochener B. Case retrieval in medical databases by fusing heterogeneous information. IEEE Trans Med Imaging. 2011;30(1):108–18.CrossRefPubMed Quellec G, Lamard M, Cazuguel G, Roux C, Cochener B. Case retrieval in medical databases by fusing heterogeneous information. IEEE Trans Med Imaging. 2011;30(1):108–18.CrossRefPubMed
50.
go back to reference Kim J, Cai W, Feng D, Wu H. A new way for multidimensional medical data management: volume of interest (VOI)-based retrieval of medical images with visual and functional features. IEEE Trans Inf Technol Biomed. 2006;10(3):598–607.CrossRefPubMed Kim J, Cai W, Feng D, Wu H. A new way for multidimensional medical data management: volume of interest (VOI)-based retrieval of medical images with visual and functional features. IEEE Trans Inf Technol Biomed. 2006;10(3):598–607.CrossRefPubMed
51.
go back to reference Zheng X, Liu W, Dundar M, Badve S, Zhang S. Towards large-scale histopathological image analysis: Hashing-based image retrieval. IEEE Trans Med Imaging. 2015;34(2):496–506.CrossRef Zheng X, Liu W, Dundar M, Badve S, Zhang S. Towards large-scale histopathological image analysis: Hashing-based image retrieval. IEEE Trans Med Imaging. 2015;34(2):496–506.CrossRef
52.
go back to reference Zheng Y, Jiang Z, Zhang H, Xie F, Ma Y, Shi H, Zhao Y. Histopathological whole slide image analysis using context-based CBIR. IEEE Trans Med Imaging 2018 (in press). Zheng Y, Jiang Z, Zhang H, Xie F, Ma Y, Shi H, Zhao Y. Histopathological whole slide image analysis using context-based CBIR. IEEE Trans Med Imaging 2018 (in press).
53.
go back to reference Caicedo JC, Gonzalez FA, Romero E. Content-based histopathology image retrieval using a kernel-based semantic annotation framework. J Biomed Inf. 2011;44:519–28.CrossRef Caicedo JC, Gonzalez FA, Romero E. Content-based histopathology image retrieval using a kernel-based semantic annotation framework. J Biomed Inf. 2011;44:519–28.CrossRef
54.
go back to reference Baldi A, Murace R, Dragonetti E, Manganaro M, Guerra O, Bizzi S, Galli L. Definition of an automated content-based image retrieval (CBIR) system for the comparison f dermoscopic images of pigmented skin lesions. BioMed Eng Online. 2009;8:18.CrossRefPubMedPubMedCentral Baldi A, Murace R, Dragonetti E, Manganaro M, Guerra O, Bizzi S, Galli L. Definition of an automated content-based image retrieval (CBIR) system for the comparison f dermoscopic images of pigmented skin lesions. BioMed Eng Online. 2009;8:18.CrossRefPubMedPubMedCentral
55.
go back to reference Tafresh MK, Linard N, Andre B, Ayache N, Vercauteren T. Semi-automated query construction for content-based endomicroscopy video retrieval. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R, editors. Medical image computing and computer-assisted intervention—MICCAI 2014 LNCS 8673, pp 89–96. Tafresh MK, Linard N, Andre B, Ayache N, Vercauteren T. Semi-automated query construction for content-based endomicroscopy video retrieval. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R, editors. Medical image computing and computer-assisted intervention—MICCAI 2014 LNCS 8673, pp 89–96.
56.
go back to reference Nishikawa RM, Yang Y, Huo D, Wernick M, Sennett CA, Papioannou J, Wei L. Observers’ ability to judge the similarity of clustered calcifications on mammograms. Proc SPIE Med Imaging. 2004;5372:192–8.CrossRef Nishikawa RM, Yang Y, Huo D, Wernick M, Sennett CA, Papioannou J, Wei L. Observers’ ability to judge the similarity of clustered calcifications on mammograms. Proc SPIE Med Imaging. 2004;5372:192–8.CrossRef
57.
go back to reference Wang J, Jing H, Wernick MN, Nishikawa RM, Yang Y. Analysis of perceived similarity between pairs of microcalcification clustered in mammograms. Med Phys. 2014;41(5):051904.CrossRefPubMedPubMedCentral Wang J, Jing H, Wernick MN, Nishikawa RM, Yang Y. Analysis of perceived similarity between pairs of microcalcification clustered in mammograms. Med Phys. 2014;41(5):051904.CrossRefPubMedPubMedCentral
58.
go back to reference Muramatsu C, Li Q, Schmidt R, Suzuki K, Shiraishi J, Newstead G, Doi K. Experimental determination of subjective similarity for pairs of clustered microcalcifications on mammograms: observer study results. Med Phys. 2006;33(9):3460–8.CrossRefPubMed Muramatsu C, Li Q, Schmidt R, Suzuki K, Shiraishi J, Newstead G, Doi K. Experimental determination of subjective similarity for pairs of clustered microcalcifications on mammograms: observer study results. Med Phys. 2006;33(9):3460–8.CrossRefPubMed
59.
go back to reference Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Suzuki K, Newstead GM, Doi K. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: Comparison of similarity, ranking scores and absolute similarity ratings. Med Phys. 2007;34(7):2890–5.CrossRefPubMed Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Suzuki K, Newstead GM, Doi K. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: Comparison of similarity, ranking scores and absolute similarity ratings. Med Phys. 2007;34(7):2890–5.CrossRefPubMed
60.
go back to reference Kumazawa S, Muramatsu C, Li Q, Li F, Shiraishi J, Caligiuri P, Schmidt RA, MacMahon H, Doi K. An investigation of radiologists’ perception of lesion similarity: observations with paired breast masses on mammograms and paired lung nodules on CT images. Acad Radiol. 2008;15:887–94.CrossRefPubMed Kumazawa S, Muramatsu C, Li Q, Li F, Shiraishi J, Caligiuri P, Schmidt RA, MacMahon H, Doi K. An investigation of radiologists’ perception of lesion similarity: observations with paired breast masses on mammograms and paired lung nodules on CT images. Acad Radiol. 2008;15:887–94.CrossRefPubMed
61.
go back to reference Tourassi G, Yoon HJ, Xu S, Morin-Ducote G, Hudson K. Comparative analysis of data collection methods for individualized modeling of radiologists’ visual similarity judgments in mammograms. Acad Radiol. 2013;20:1371–80.CrossRefPubMed Tourassi G, Yoon HJ, Xu S, Morin-Ducote G, Hudson K. Comparative analysis of data collection methods for individualized modeling of radiologists’ visual similarity judgments in mammograms. Acad Radiol. 2013;20:1371–80.CrossRefPubMed
62.
go back to reference Faruque J, Rubin DL, Beaulieu CF, Napel S. Modeling perceptual similarity measures in CT images of focal liver lesions. J Digit Imaging. 2013;26:714–20.CrossRefPubMed Faruque J, Rubin DL, Beaulieu CF, Napel S. Modeling perceptual similarity measures in CT images of focal liver lesions. J Digit Imaging. 2013;26:714–20.CrossRefPubMed
63.
go back to reference Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Doi K. Determination of similarity measures for pairs of mass lesion on mammograms by use of BI-RADS lesion descriptors and image features. Acad Radiol. 2009;16:443–9.CrossRefPubMed Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Doi K. Determination of similarity measures for pairs of mass lesion on mammograms by use of BI-RADS lesion descriptors and image features. Acad Radiol. 2009;16:443–9.CrossRefPubMed
64.
go back to reference Nakayama R, Abe H, Shiraishi J. doi K. Evaluation of objective similarity measures for selecting similar images of mammographic lesions. J Digit Imaging. 2011;24(1):75–85.CrossRefPubMed Nakayama R, Abe H, Shiraishi J. doi K. Evaluation of objective similarity measures for selecting similar images of mammographic lesions. J Digit Imaging. 2011;24(1):75–85.CrossRefPubMed
65.
66.
go back to reference Muramatsu C, Nishimura K, Endo T, Oiwa M, Shiraiwa M, Doi K, Fujita H. Representation of lesion similarity by use of multidimensional scaling for breast masses on mammograms. J Digit Imaging. 2013;26:740–7.CrossRefPubMedPubMedCentral Muramatsu C, Nishimura K, Endo T, Oiwa M, Shiraiwa M, Doi K, Fujita H. Representation of lesion similarity by use of multidimensional scaling for breast masses on mammograms. J Digit Imaging. 2013;26:740–7.CrossRefPubMedPubMedCentral
67.
go back to reference Nishimura K, Muramatsu C, Oiwa M, Shiraiwa M, Endo T, Doi K, Fujita H. Psychophysical similarity measure based on multi-dimensional scaling for retrieval of similar images of breast masses on mammograms. Proc SPIE Med Imaging. 2013;8670:86701R.CrossRef Nishimura K, Muramatsu C, Oiwa M, Shiraiwa M, Endo T, Doi K, Fujita H. Psychophysical similarity measure based on multi-dimensional scaling for retrieval of similar images of breast masses on mammograms. Proc SPIE Med Imaging. 2013;8670:86701R.CrossRef
68.
go back to reference Muramatsu C, Takahashi T, Morita T, Endo T, Fujita H. Similar image retrieval of breast masses on ultrasonography using subjective data and multidimensional scaling. In: Tingberg A et al., editors. Proceedings of international workshop on breast imaging, IWDM 2016. Lecture notes in computer science, vol 9699. 2016; pp 43–50. Muramatsu C, Takahashi T, Morita T, Endo T, Fujita H. Similar image retrieval of breast masses on ultrasonography using subjective data and multidimensional scaling. In: Tingberg A et al., editors. Proceedings of international workshop on breast imaging, IWDM 2016. Lecture notes in computer science, vol 9699. 2016; pp 43–50.
69.
go back to reference Oh JH, Yang Y, El-Naqa I. Adaptive learning for relevance feedback: application to digital mammography. Med Phys 201;37(8):4432–44. Oh JH, Yang Y, El-Naqa I. Adaptive learning for relevance feedback: application to digital mammography. Med Phys 201;37(8):4432–44.
70.
go back to reference Wei CH, Li Y, Huang PJ. Mammogram retrieval through machine learning within BI-RADS standard. J Biomed Inform. 2011;44:607–14.CrossRefPubMed Wei CH, Li Y, Huang PJ. Mammogram retrieval through machine learning within BI-RADS standard. J Biomed Inform. 2011;44:607–14.CrossRefPubMed
71.
go back to reference Cho HC, Hadjiiski L, Sahiner B, Chan HP, Paramagul C, Helvie M, Nees AV, Cho HC. A similarity study of interactive content-based image retrieval scheme for classification of breast lesions. IEICE Trans Inf Syst. 2016; E99-D:1663–1670.CrossRef Cho HC, Hadjiiski L, Sahiner B, Chan HP, Paramagul C, Helvie M, Nees AV, Cho HC. A similarity study of interactive content-based image retrieval scheme for classification of breast lesions. IEICE Trans Inf Syst. 2016; E99-D:1663–1670.CrossRef
72.
go back to reference Liu X, Tizhoosh HR, Kofman J. Generating binary tags for fast medical image retrieval based on convolutional nets and Radon transform. In: Proceedings of the International Joint Conference on Neural Networks 2016. Liu X, Tizhoosh HR, Kofman J. Generating binary tags for fast medical image retrieval based on convolutional nets and Radon transform. In: Proceedings of the International Joint Conference on Neural Networks 2016.
73.
go back to reference Anavi Y, Kogan I, Gelbart E, Geva O, Greenspan H. Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval. Proc SPIE Med Imaging. 2016;9785:978510.CrossRef Anavi Y, Kogan I, Gelbart E, Geva O, Greenspan H. Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval. Proc SPIE Med Imaging. 2016;9785:978510.CrossRef
74.
go back to reference Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proc advances in neural information processing systems 2012; pp 1097–105. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proc advances in neural information processing systems 2012; pp 1097–105.
75.
go back to reference Qayyam A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing. 2017;266:8–20.CrossRef Qayyam A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing. 2017;266:8–20.CrossRef
76.
go back to reference Khatami A, Babaie M, Tizhoosh HR, Khosravi A, Nguyen T, Nahavandi S. A wequential serach-space shrinking using CNN transfer learning and a radon projection pool for medical image retrieval. Expert Syst Appl. 2018;100:224–33.CrossRef Khatami A, Babaie M, Tizhoosh HR, Khosravi A, Nguyen T, Nahavandi S. A wequential serach-space shrinking using CNN transfer learning and a radon projection pool for medical image retrieval. Expert Syst Appl. 2018;100:224–33.CrossRef
77.
go back to reference Pang S, Orgun MA, Yu Z. A novel biomedical image indexing and retrieval system via deep preference learning. Comput Methods Programs Biomed. 2018;158:53–69.CrossRefPubMed Pang S, Orgun MA, Yu Z. A novel biomedical image indexing and retrieval system via deep preference learning. Comput Methods Programs Biomed. 2018;158:53–69.CrossRefPubMed
78.
go back to reference Muramatsu C, Higuchi S, Morita T, Oiwa M, Fujita H. Similarity estimation for reference image retrieval in mammograms using convolutional neural network. Proc SPIE Med Imaging. 2018;10575:105752U. Muramatsu C, Higuchi S, Morita T, Oiwa M, Fujita H. Similarity estimation for reference image retrieval in mammograms using convolutional neural network. Proc SPIE Med Imaging. 2018;10575:105752U.
79.
go back to reference Muramatsu C, Higuchi S, Morita T, Oiwa M, Kawasaki T, Fujita H. Retrieval of reference images of breast masses on mammograms by similarity space modeling. In: Proceedings of IWBI LNCS 2018. (in press). Muramatsu C, Higuchi S, Morita T, Oiwa M, Kawasaki T, Fujita H. Retrieval of reference images of breast masses on mammograms by similarity space modeling. In: Proceedings of IWBI LNCS 2018. (in press).
81.
go back to reference Oosawa A, Hisanaga R, Inoue T, Hoshino T, Shimura K. Development and commercialization of “SYNAPSE Case Match” content-based image retrieval system for effectively supporting the interpretation of physician. Med Imag Tech. 2014;32:26–31. (in Japanese). Oosawa A, Hisanaga R, Inoue T, Hoshino T, Shimura K. Development and commercialization of “SYNAPSE Case Match” content-based image retrieval system for effectively supporting the interpretation of physician. Med Imag Tech. 2014;32:26–31. (in Japanese).
82.
go back to reference Kiyono M. Development of Similar case retrieval system by AI. Innervision 2017:32:46–49. (in Japanese). Kiyono M. Development of Similar case retrieval system by AI. Innervision 2017:32:46–49. (in Japanese).
83.
go back to reference Korenblum D, Rubin D, Napel S, Rodriguez C, Beaulieu C. Managing biomedical image metadata for search and retrieval of similar images. J Digit Imaging. 2011;24(4):739–48.CrossRefPubMed Korenblum D, Rubin D, Napel S, Rodriguez C, Beaulieu C. Managing biomedical image metadata for search and retrieval of similar images. J Digit Imaging. 2011;24(4):739–48.CrossRefPubMed
84.
go back to reference Takahashi T, Muramatsu C, Hiramatsu Y, Morita T, Hara T, Endo T, Fujita H. Similar image search of breast masses by combination of mammograms and ultrasound images—study of psychophysical similarity measure based on multi-dimensional scaling. IEICE Technical Report 2016; MI2015-107:161–164. (in Japanese). Takahashi T, Muramatsu C, Hiramatsu Y, Morita T, Hara T, Endo T, Fujita H. Similar image search of breast masses by combination of mammograms and ultrasound images—study of psychophysical similarity measure based on multi-dimensional scaling. IEICE Technical Report 2016; MI2015-107:161–164. (in Japanese).
85.
go back to reference Park SC, Sukthankar R, Mummert L, Satyanarayanan M, Zheng B. Optimization of reference library used in content-based medical image retrieval scheme. Med Phys. 2007;34(11):4331–9.CrossRefPubMedPubMedCentral Park SC, Sukthankar R, Mummert L, Satyanarayanan M, Zheng B. Optimization of reference library used in content-based medical image retrieval scheme. Med Phys. 2007;34(11):4331–9.CrossRefPubMedPubMedCentral
Metadata
Title
Overview on subjective similarity of images for content-based medical image retrieval
Author
Chisako Muramatsu
Publication date
01-06-2018
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 2/2018
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-018-0461-6

Other articles of this Issue 2/2018

Radiological Physics and Technology 2/2018 Go to the issue