Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2013

Open Access 01-12-2013 | Research article

Postmenopausal women with osteoporosis and osteoarthritis show different microstructural characteristics of trabecular bone in proximal tibia using high-resolution magnetic resonance imaging at 3 tesla

Authors: Yun Shen, Yue-Hui Zhang, Lei Shen

Published in: BMC Musculoskeletal Disorders | Issue 1/2013

Login to get access

Abstract

Background

Osteoporosis (OP) and osteoarthritis (OA) are two common musculoskeletal disorders that affect the quality of life in aged people. An inverse relationship between OP and OA was proposed four decades ago. However, the difference in microstructure of the trabecular bone of these two disorders by high-resolution MRI (HR-MRI) has not been compared. The primary objective of the study is to explain the actual relationship between OA and OP based on differences between bone microstructure of these two diseases. The secondary objectives are to find out the significance of Euler number and its relationship with other structural parameters, and important role of HR-MRI to reveal the microstructure of trabecular bone directly.

Methods

Totally, 30 women with OP and 30 women with OA (n = 60) were included in this study. Primary OA of hip, knee, as well as spinal arthrosis were diagnosed according to plain X-ray film findings. Osteoporosis was defined based on the latest criteria of World Health Organization (WHO). Structural and textural parameters derived from HR-MRI images of proximal tibia were calculated and compared with special software.

Results

There were significant differences in apparent bone volume fraction, trabecular thickness, mean roundness, Euler number, entropy and inverse different moment between OP and OA patients. In OP group, apparent trabecular separation (Tb.Sp), inertia, absolute value and contrast were positively correlated with Euler number, whereas apparent trabecular number (Tb.N), mean trabecular area, inverse difference and inverse different moment were negatively correlated. Apparent trabecular bone volume fraction (BV/TV), mean trabecular area, mean trabecular perimeter and mean skeleton length negatively correlated with Euler number in OA group. Inverse different moment was the texture parameter, which influenced bone mineral density (BMD) of femoral neck, meanwhile contrast influenced BMD of both great trochanter and Ward’s triangle in OP group. While in OA group, Euler number was the exclusive parameter, which affected BMD of femoral neck and Ward’s triangle.

Conclusions

We found significant differences in microstructure parameters derived from HR-MRI images between postmenopausal women with OP and OA. It convincingly supports the hypothesis that there might be an inverse relationship between OP and OA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yamada Y: Association of a polymorphism of the transforming growth factor beta-1 gene with prevalent vertebral fractures in Japanese women. Am J Med. 2000, 109 (3): 244-247. 10.1016/S0002-9343(00)00468-X.CrossRefPubMed Yamada Y: Association of a polymorphism of the transforming growth factor beta-1 gene with prevalent vertebral fractures in Japanese women. Am J Med. 2000, 109 (3): 244-247. 10.1016/S0002-9343(00)00468-X.CrossRefPubMed
2.
go back to reference Szulc P: Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab. 2001, 86 (1): 192-199. 10.1210/jc.86.1.192.PubMed Szulc P: Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab. 2001, 86 (1): 192-199. 10.1210/jc.86.1.192.PubMed
3.
go back to reference Riggs BL, Khosla S, Melton LJ: A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998, 13 (5): 763-773. 10.1359/jbmr.1998.13.5.763.CrossRefPubMed Riggs BL, Khosla S, Melton LJ: A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998, 13 (5): 763-773. 10.1359/jbmr.1998.13.5.763.CrossRefPubMed
4.
go back to reference Uitterlinden AG: Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med. 1998, 338 (15): 1016-1021. 10.1056/NEJM199804093381502.CrossRefPubMed Uitterlinden AG: Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med. 1998, 338 (15): 1016-1021. 10.1056/NEJM199804093381502.CrossRefPubMed
5.
go back to reference Falahati-Nini A: Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000, 106 (12): 1553-1560. 10.1172/JCI10942.CrossRefPubMedPubMedCentral Falahati-Nini A: Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000, 106 (12): 1553-1560. 10.1172/JCI10942.CrossRefPubMedPubMedCentral
6.
go back to reference Page WF: Primary osteoarthritis of the hip in monozygotic and dizygotic male twins. Twin Res. 2003, 6 (2): 147-151.CrossRefPubMed Page WF: Primary osteoarthritis of the hip in monozygotic and dizygotic male twins. Twin Res. 2003, 6 (2): 147-151.CrossRefPubMed
7.
go back to reference Smith RW, Rizek J: Epidemiologic studies of osteoporosis in women of Puerto Rico and southeastern Michigan with special reference to age, race, national origin and to other related or associated findings. Clin Orthop Relat Res. 1966, 45: 31-48.CrossRefPubMed Smith RW, Rizek J: Epidemiologic studies of osteoporosis in women of Puerto Rico and southeastern Michigan with special reference to age, race, national origin and to other related or associated findings. Clin Orthop Relat Res. 1966, 45: 31-48.CrossRefPubMed
8.
go back to reference Foss MV, Byers PD: Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis. 1972, 31 (4): 259-264. 10.1136/ard.31.4.259.CrossRefPubMedPubMedCentral Foss MV, Byers PD: Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis. 1972, 31 (4): 259-264. 10.1136/ard.31.4.259.CrossRefPubMedPubMedCentral
9.
go back to reference Dequeker J: Inverse relationship osteoarthritis-osteoporosis: what is the evidence? What are the consequences?. Br J Rheumatol. 1996, 35 (9): 813-818. 10.1093/rheumatology/35.9.813.CrossRefPubMed Dequeker J: Inverse relationship osteoarthritis-osteoporosis: what is the evidence? What are the consequences?. Br J Rheumatol. 1996, 35 (9): 813-818. 10.1093/rheumatology/35.9.813.CrossRefPubMed
10.
go back to reference Dequeker J: Ageing of bone: its relation to osteoporosis and osteoarthrosis in post-menopausal women. Front Horm Res. 1975, 3: 116-130.CrossRefPubMed Dequeker J: Ageing of bone: its relation to osteoporosis and osteoarthrosis in post-menopausal women. Front Horm Res. 1975, 3: 116-130.CrossRefPubMed
11.
go back to reference Verstraeten A: Osteoarthrosis retards the development of osteoporosis. Observation of the coexistence of osteoarthrosis and osteoporosis. Clin Orthop Relat Res. 1991, 264: 169-177.PubMed Verstraeten A: Osteoarthrosis retards the development of osteoporosis. Observation of the coexistence of osteoarthrosis and osteoporosis. Clin Orthop Relat Res. 1991, 264: 169-177.PubMed
12.
go back to reference Hordon LD: Primary generalized osteoarthritis and bone mass. Br J Rheumatol. 1993, 32 (12): 1059-1061. 10.1093/rheumatology/32.12.1059.CrossRefPubMed Hordon LD: Primary generalized osteoarthritis and bone mass. Br J Rheumatol. 1993, 32 (12): 1059-1061. 10.1093/rheumatology/32.12.1059.CrossRefPubMed
13.
go back to reference Dequeker J, Johnell O: Osteoarthritis protects against femoral neck fracture: the MEDOS study experience. Bone. 1993, 14 (Suppl 1): S51-S56.CrossRefPubMed Dequeker J, Johnell O: Osteoarthritis protects against femoral neck fracture: the MEDOS study experience. Bone. 1993, 14 (Suppl 1): S51-S56.CrossRefPubMed
14.
go back to reference Dequeker J, Aerssens J, Luyten FP: Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res. 2003, 15 (5): 426-439.CrossRefPubMed Dequeker J, Aerssens J, Luyten FP: Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res. 2003, 15 (5): 426-439.CrossRefPubMed
15.
go back to reference Hochberg MC, Lethbridge-Cejku M, Tobin JD: Bone mineral density and osteoarthritis: data from the Baltimore longitudinal study of aging. Osteoarthritis Cartilage. 2004, 12 (Suppl A): S45-S48.CrossRefPubMed Hochberg MC, Lethbridge-Cejku M, Tobin JD: Bone mineral density and osteoarthritis: data from the Baltimore longitudinal study of aging. Osteoarthritis Cartilage. 2004, 12 (Suppl A): S45-S48.CrossRefPubMed
16.
go back to reference Herrero-Beaumont G, Roman-Blas JA, Largo R, Berenbaum F, Castañeda S: Bone mineral density and joint cartilage: four clinical settings of a complex relationship in osteoarthritis. Ann Rheum Dis. 2011, 70 (9): 1523-1525. 10.1136/ard.2011.151233.CrossRefPubMed Herrero-Beaumont G, Roman-Blas JA, Largo R, Berenbaum F, Castañeda S: Bone mineral density and joint cartilage: four clinical settings of a complex relationship in osteoarthritis. Ann Rheum Dis. 2011, 70 (9): 1523-1525. 10.1136/ard.2011.151233.CrossRefPubMed
17.
go back to reference Castañeda S, Navarro F, Fernández-Carballido C, Tornero C, Marced E, Corteguera M: Differences in the management of early and established rheumatoid arthritis. Reumatol Clin. 2011, 7 (3): 172-178. 10.1016/j.reuma.2010.08.001.CrossRefPubMed Castañeda S, Navarro F, Fernández-Carballido C, Tornero C, Marced E, Corteguera M: Differences in the management of early and established rheumatoid arthritis. Reumatol Clin. 2011, 7 (3): 172-178. 10.1016/j.reuma.2010.08.001.CrossRefPubMed
18.
go back to reference Healey JH, Vigorita VJ, Lane JM: The coexistence and characteristics of osteoarthritis and osteoporosis. J Bone Joint Surg Am. 1985, 67 (4): 586-592.PubMed Healey JH, Vigorita VJ, Lane JM: The coexistence and characteristics of osteoarthritis and osteoporosis. J Bone Joint Surg Am. 1985, 67 (4): 586-592.PubMed
19.
go back to reference Li B, Aspden RM: Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int. 1997, 7 (5): 450-456. 10.1007/s001980050032.CrossRefPubMed Li B, Aspden RM: Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int. 1997, 7 (5): 450-456. 10.1007/s001980050032.CrossRefPubMed
20.
go back to reference Link TM: Imaging of trabecular bone structure in osteoporosis. Eur Radiol. 1999, 9 (9): 1781-1788. 10.1007/s003300050922.CrossRefPubMed Link TM: Imaging of trabecular bone structure in osteoporosis. Eur Radiol. 1999, 9 (9): 1781-1788. 10.1007/s003300050922.CrossRefPubMed
21.
go back to reference Kinney JH: Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis. Technol Health Care. 1998, 6 (5–6): 339-350.PubMed Kinney JH: Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis. Technol Health Care. 1998, 6 (5–6): 339-350.PubMed
22.
go back to reference Stenstrom M: Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech. 2000, 33 (3): 289-297. 10.1016/S0021-9290(99)00181-5.CrossRefPubMed Stenstrom M: Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech. 2000, 33 (3): 289-297. 10.1016/S0021-9290(99)00181-5.CrossRefPubMed
23.
go back to reference Cooper C: The epidemiology of fragility fractures: is there a role for bone quality?. Calcif Tissue Int. 1993, 53 (Suppl 1): S23-S26.CrossRefPubMed Cooper C: The epidemiology of fragility fractures: is there a role for bone quality?. Calcif Tissue Int. 1993, 53 (Suppl 1): S23-S26.CrossRefPubMed
24.
go back to reference Dempster DW: Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int. 1993, 3 (2): 90-96. 10.1007/BF01623379.CrossRefPubMed Dempster DW: Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int. 1993, 3 (2): 90-96. 10.1007/BF01623379.CrossRefPubMed
25.
go back to reference Boutroy S: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005, 90 (12): 6508-6515. 10.1210/jc.2005-1258.CrossRefPubMed Boutroy S: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005, 90 (12): 6508-6515. 10.1210/jc.2005-1258.CrossRefPubMed
26.
go back to reference Majumdar S: Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002, 13 (5): 323-334. 10.1097/00002142-200210000-00004.CrossRefPubMed Majumdar S: Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002, 13 (5): 323-334. 10.1097/00002142-200210000-00004.CrossRefPubMed
27.
go back to reference Wehrli FW: Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging. 2002, 13 (5): 335-355. 10.1097/00002142-200210000-00005.CrossRefPubMed Wehrli FW: Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging. 2002, 13 (5): 335-355. 10.1097/00002142-200210000-00005.CrossRefPubMed
28.
go back to reference Wehrli FW, Hwang SN, Song HK: New architectural parameters derived from micro-MRI for the prediction of trabecular bone strength. Technol Health Care. 1998, 6 (5–6): 307-320.PubMed Wehrli FW, Hwang SN, Song HK: New architectural parameters derived from micro-MRI for the prediction of trabecular bone strength. Technol Health Care. 1998, 6 (5–6): 307-320.PubMed
29.
go back to reference Majumdar S, Genant HK: Assessment of trabecular structure using high resolution magnetic resonance imaging. Stud Health Technol Inform. 1997, 40: 81-96.PubMed Majumdar S, Genant HK: Assessment of trabecular structure using high resolution magnetic resonance imaging. Stud Health Technol Inform. 1997, 40: 81-96.PubMed
30.
go back to reference Chung HW: Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res. 1995, 10 (10): 1452-1461.CrossRefPubMed Chung HW: Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res. 1995, 10 (10): 1452-1461.CrossRefPubMed
31.
go back to reference Majumdar S: Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997, 12 (1): 111-118. 10.1359/jbmr.1997.12.1.111.CrossRefPubMed Majumdar S: Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997, 12 (1): 111-118. 10.1359/jbmr.1997.12.1.111.CrossRefPubMed
32.
go back to reference Majumdar S: High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998, 22 (5): 445-454. 10.1016/S8756-3282(98)00030-1.CrossRefPubMed Majumdar S: High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998, 22 (5): 445-454. 10.1016/S8756-3282(98)00030-1.CrossRefPubMed
33.
go back to reference Majumdar S: A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. Technol Health Care. 1998, 6 (5–6): 321-327.PubMed Majumdar S: A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. Technol Health Care. 1998, 6 (5–6): 321-327.PubMed
34.
go back to reference Hipp JA: Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res. 1996, 11 (2): 286-297.CrossRefPubMed Hipp JA: Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res. 1996, 11 (2): 286-297.CrossRefPubMed
35.
go back to reference Majumdar S: Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int. 1996, 6 (5): 376-385. 10.1007/BF01623011.CrossRefPubMed Majumdar S: Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int. 1996, 6 (5): 376-385. 10.1007/BF01623011.CrossRefPubMed
36.
go back to reference Ding M: Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res. 2002, 20 (3): 615-621. 10.1016/S0736-0266(01)00132-2.CrossRefPubMed Ding M: Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res. 2002, 20 (3): 615-621. 10.1016/S0736-0266(01)00132-2.CrossRefPubMed
37.
go back to reference Zhang ZM: Differential articular calcified cartilage and subchondral bone in postmenopausal women with osteoarthritis and osteoporosis: two-dimensional analysis. Joint Bone Spine. 2009, 76 (6): 674-679. 10.1016/j.jbspin.2009.03.011.CrossRefPubMed Zhang ZM: Differential articular calcified cartilage and subchondral bone in postmenopausal women with osteoarthritis and osteoporosis: two-dimensional analysis. Joint Bone Spine. 2009, 76 (6): 674-679. 10.1016/j.jbspin.2009.03.011.CrossRefPubMed
38.
go back to reference Zhang ZM: Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos Int. 2010, 21 (8): 1383-1390. 10.1007/s00198-009-1071-2.CrossRefPubMed Zhang ZM: Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos Int. 2010, 21 (8): 1383-1390. 10.1007/s00198-009-1071-2.CrossRefPubMed
39.
go back to reference Jiang LS: Differential bone metabolism between postmenopausal women with osteoarthritis and osteoporosis. J Bone Miner Res. 2008, 23 (4): 475-483.CrossRefPubMed Jiang LS: Differential bone metabolism between postmenopausal women with osteoarthritis and osteoporosis. J Bone Miner Res. 2008, 23 (4): 475-483.CrossRefPubMed
40.
go back to reference Shen Y: Postmenopausal women with osteoarthritis and osteoporosis show different ultrastructural characteristics of trabecular bone of the femoral head. BMC Musculoskelet Disord. 2009, 10: 35-10.1186/1471-2474-10-35.CrossRefPubMedPubMedCentral Shen Y: Postmenopausal women with osteoarthritis and osteoporosis show different ultrastructural characteristics of trabecular bone of the femoral head. BMC Musculoskelet Disord. 2009, 10: 35-10.1186/1471-2474-10-35.CrossRefPubMedPubMedCentral
41.
go back to reference Verhoeven JW: Bone structure changes in iliac crest grafts combined with implants. Clin Implant Dent Relat Res. 2010, 12 (4): 289-296. 10.1111/j.1708-8208.2009.00169.x.CrossRefPubMed Verhoeven JW: Bone structure changes in iliac crest grafts combined with implants. Clin Implant Dent Relat Res. 2010, 12 (4): 289-296. 10.1111/j.1708-8208.2009.00169.x.CrossRefPubMed
42.
go back to reference Majumdar S: Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int. 1999, 10 (3): 231-239. 10.1007/s001980050221.CrossRefPubMed Majumdar S: Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int. 1999, 10 (3): 231-239. 10.1007/s001980050221.CrossRefPubMed
43.
go back to reference Baba N, Ichise N, Tanaka T: Image area extraction of biological objects from a thin section image by statistical texture analysis. J Electron Microsc (Tokyo). 1996, 45 (4): 298-306. 10.1093/oxfordjournals.jmicro.a023446.CrossRef Baba N, Ichise N, Tanaka T: Image area extraction of biological objects from a thin section image by statistical texture analysis. J Electron Microsc (Tokyo). 1996, 45 (4): 298-306. 10.1093/oxfordjournals.jmicro.a023446.CrossRef
44.
go back to reference Siffert RS: Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia. Bone. 1996, 18 (2): 197-206. 10.1016/8756-3282(95)00446-7.CrossRefPubMed Siffert RS: Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia. Bone. 1996, 18 (2): 197-206. 10.1016/8756-3282(95)00446-7.CrossRefPubMed
45.
go back to reference Gordon CL, Webber CE, Nicholson PS: Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J. 1998, 49 (6): 390-397.PubMed Gordon CL, Webber CE, Nicholson PS: Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J. 1998, 49 (6): 390-397.PubMed
46.
go back to reference Oden ZM: The effect of trabecular structure on DXA-based predictions of bovine bone failure. Calcif Tissue Int. 1998, 63 (1): 67-73. 10.1007/s002239900491.CrossRefPubMed Oden ZM: The effect of trabecular structure on DXA-based predictions of bovine bone failure. Calcif Tissue Int. 1998, 63 (1): 67-73. 10.1007/s002239900491.CrossRefPubMed
47.
go back to reference Ulrich D: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999, 25 (1): 55-60. 10.1016/S8756-3282(99)00098-8.CrossRefPubMed Ulrich D: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999, 25 (1): 55-60. 10.1016/S8756-3282(99)00098-8.CrossRefPubMed
48.
go back to reference Ding M, Hvid I: Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone. 2000, 26 (3): 291-295. 10.1016/S8756-3282(99)00281-1.CrossRefPubMed Ding M, Hvid I: Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone. 2000, 26 (3): 291-295. 10.1016/S8756-3282(99)00281-1.CrossRefPubMed
49.
go back to reference Patel V: MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimens. J Orthop Res. 2003, 21 (1): 6-13. 10.1016/S0736-0266(02)00093-1.CrossRefPubMed Patel V: MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimens. J Orthop Res. 2003, 21 (1): 6-13. 10.1016/S0736-0266(02)00093-1.CrossRefPubMed
50.
go back to reference Chappard C: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage. 2006, 14 (3): 215-223. 10.1016/j.joca.2005.09.008.CrossRefPubMed Chappard C: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage. 2006, 14 (3): 215-223. 10.1016/j.joca.2005.09.008.CrossRefPubMed
51.
go back to reference Stauber M, Muller R: Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int. 2006, 17 (4): 616-626. 10.1007/s00198-005-0025-6.CrossRefPubMed Stauber M, Muller R: Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int. 2006, 17 (4): 616-626. 10.1007/s00198-005-0025-6.CrossRefPubMed
52.
go back to reference Ito M: Effects of risedronate on trabecular microstructure and biomechanical properties in ovariectomized rat tibia. Osteoporos Int. 2005, 16 (9): 1042-1048. 10.1007/s00198-004-1802-3.CrossRefPubMed Ito M: Effects of risedronate on trabecular microstructure and biomechanical properties in ovariectomized rat tibia. Osteoporos Int. 2005, 16 (9): 1042-1048. 10.1007/s00198-004-1802-3.CrossRefPubMed
53.
go back to reference Ding M, Odgaard A, Hvid I: Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br. 2003, 85 (6): 906-912.PubMed Ding M, Odgaard A, Hvid I: Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br. 2003, 85 (6): 906-912.PubMed
54.
go back to reference Buckland-Wright JC, Lynch JA, Dave B: Early radiographic features in patients with anterior cruciate ligament rupture. Ann Rheum Dis. 2000, 59 (8): 641-646. 10.1136/ard.59.8.641.CrossRefPubMedPubMedCentral Buckland-Wright JC, Lynch JA, Dave B: Early radiographic features in patients with anterior cruciate ligament rupture. Ann Rheum Dis. 2000, 59 (8): 641-646. 10.1136/ard.59.8.641.CrossRefPubMedPubMedCentral
55.
go back to reference Watson PJ: Degenerative joint disease in the guinea pig. Use of magnetic resonance imaging to monitor progression of bone pathology. Arthritis Rheum. 1996, 39 (8): 1327-1337. 10.1002/art.1780390810.CrossRefPubMed Watson PJ: Degenerative joint disease in the guinea pig. Use of magnetic resonance imaging to monitor progression of bone pathology. Arthritis Rheum. 1996, 39 (8): 1327-1337. 10.1002/art.1780390810.CrossRefPubMed
56.
go back to reference Feldkamp LA: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989, 4 (1): 3-11.CrossRefPubMed Feldkamp LA: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989, 4 (1): 3-11.CrossRefPubMed
57.
go back to reference Portero-Muzy NR: Euler (strut.cavity), a new histomorphometric parameter of connectivity reflects bone strength and speed of sound in trabecular bone from human os calcis. Calcif Tissue Int. 2007, 81 (2): 92-98. 10.1007/s00223-007-9044-y.CrossRefPubMed Portero-Muzy NR: Euler (strut.cavity), a new histomorphometric parameter of connectivity reflects bone strength and speed of sound in trabecular bone from human os calcis. Calcif Tissue Int. 2007, 81 (2): 92-98. 10.1007/s00223-007-9044-y.CrossRefPubMed
Metadata
Title
Postmenopausal women with osteoporosis and osteoarthritis show different microstructural characteristics of trabecular bone in proximal tibia using high-resolution magnetic resonance imaging at 3 tesla
Authors
Yun Shen
Yue-Hui Zhang
Lei Shen
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2013
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-14-136

Other articles of this Issue 1/2013

BMC Musculoskeletal Disorders 1/2013 Go to the issue