Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Positron Emission Tomography | Original research

Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice

Authors: Marion Chomet, Maxime Schreurs, Ricardo Vos, Mariska Verlaan, Esther J. Kooijman, Alex J. Poot, Ronald Boellaard, Albert D. Windhorst, Guus AMS van Dongen, Danielle J. Vugts, Marc C. Huisman, Wissam Beaino

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Introduction

The assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models.

Methods

NEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~ 14 MBq), kept 50 min under anesthesia followed by imaging for 20 min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~ 5 MBq) and imaged 3 days post-injection for 45 min. After PET acquisition, animals were killed and organs of interest were collected and measured in a γ-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland–Altman plots.

Results

In phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8–0.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used.

Conclusions

Our study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pantel AR, Mankoff DA. Molecular imaging to guide systemic cancer therapy: illustrative examples of PET imaging cancer biomarkers. Cancer Lett. 2017;387:25–31.CrossRef Pantel AR, Mankoff DA. Molecular imaging to guide systemic cancer therapy: illustrative examples of PET imaging cancer biomarkers. Cancer Lett. 2017;387:25–31.CrossRef
2.
go back to reference Hu Z, Yang W, Liu H, Wang K, Bao C, Song T, et al. From PET/CT to PET/MRI: advances in instrumentation and clinical applications. Mol Pharm. 2014;11:3798–809.CrossRef Hu Z, Yang W, Liu H, Wang K, Bao C, Song T, et al. From PET/CT to PET/MRI: advances in instrumentation and clinical applications. Mol Pharm. 2014;11:3798–809.CrossRef
3.
go back to reference Cunha L, Horvath I, Ferreira S, Lemos J, Costa P, Vieira D, et al. Preclinical imaging: an essential ally in modern biosciences. Mol Diagn Ther. 2014;18:153–73.CrossRef Cunha L, Horvath I, Ferreira S, Lemos J, Costa P, Vieira D, et al. Preclinical imaging: an essential ally in modern biosciences. Mol Diagn Ther. 2014;18:153–73.CrossRef
4.
go back to reference O’Farrell A, Shnyder S, Marston G, Coletta P, Gill J. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol. 2013;169:719–35.CrossRef O’Farrell A, Shnyder S, Marston G, Coletta P, Gill J. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol. 2013;169:719–35.CrossRef
5.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE Guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRef Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE Guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRef
6.
go back to reference Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54:120–32.PubMedPubMedCentral Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54:120–32.PubMedPubMedCentral
7.
go back to reference Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol. 2017;220:3007–16.CrossRef Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol. 2017;220:3007–16.CrossRef
8.
go back to reference Lauber DT, Fülöp A, Kovács T, Szigeti K, Máthé D, Szijártó A. State of the art in vivo imaging techniques for laboratory animals. Lab Anim. 2017;51:465–78.CrossRef Lauber DT, Fülöp A, Kovács T, Szigeti K, Máthé D, Szijártó A. State of the art in vivo imaging techniques for laboratory animals. Lab Anim. 2017;51:465–78.CrossRef
9.
go back to reference England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58:162–8.CrossRef England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58:162–8.CrossRef
10.
go back to reference Kuntner C, Stout D. Quantitative preclinical PET imaging: opportunities and challenges. Front Phys Front. 2014;2:12. Kuntner C, Stout D. Quantitative preclinical PET imaging: opportunities and challenges. Front Phys Front. 2014;2:12.
11.
go back to reference Mannheim JG, Mamach M, Reder S, Traxl A, Mucha N, Disselhorst JA, et al. Reproducibility and comparability of preclinical PET imaging data: a multicenter small-animal PET study. J Nucl Med. 2019;60:1483–91.CrossRef Mannheim JG, Mamach M, Reder S, Traxl A, Mucha N, Disselhorst JA, et al. Reproducibility and comparability of preclinical PET imaging data: a multicenter small-animal PET study. J Nucl Med. 2019;60:1483–91.CrossRef
12.
go back to reference Mcdougald W, Vanhove C, Lehnert A, Lewellen B, Wright J, Mingarelli M, et al. Standardization of preclinical PET/CT imaging to improve quantitative accuracy, precision, and reproducibility: a multicenter study. J Nucl Med. 2020;61:461–8.CrossRef Mcdougald W, Vanhove C, Lehnert A, Lewellen B, Wright J, Mingarelli M, et al. Standardization of preclinical PET/CT imaging to improve quantitative accuracy, precision, and reproducibility: a multicenter study. J Nucl Med. 2020;61:461–8.CrossRef
13.
go back to reference Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin. 2007;2:125–60.CrossRef Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin. 2007;2:125–60.CrossRef
14.
go back to reference Nagy K, Tóth M, Major P, Patay G, Egri G, Häggkvist J, et al. Performance evaluation of the small-animal nanoscan PET/MRI system. J Nucl Med. 2013;54:1825–32.CrossRef Nagy K, Tóth M, Major P, Patay G, Egri G, Häggkvist J, et al. Performance evaluation of the small-animal nanoscan PET/MRI system. J Nucl Med. 2013;54:1825–32.CrossRef
15.
go back to reference Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J Nucl Med. 2011;52:1741–7.CrossRef Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J Nucl Med. 2011;52:1741–7.CrossRef
16.
go back to reference Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJG, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 Standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.CrossRef Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJG, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 Standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.CrossRef
17.
go back to reference National Electrical Manufacturers Association. NEMA Standards Publication NU 4–2008 performance measurements of small animal positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2008. National Electrical Manufacturers Association. NEMA Standards Publication NU 4–2008 performance measurements of small animal positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2008.
18.
go back to reference Gontijo RMG, Ferreira AV, Silva JB, Mamede MH. Image quality assessment using NEMA NU 4/2008 standards in small animal PET scanner. Braz J Radiat Sci. 2019;7:1–13. Gontijo RMG, Ferreira AV, Silva JB, Mamede MH. Image quality assessment using NEMA NU 4/2008 standards in small animal PET scanner. Braz J Radiat Sci. 2019;7:1–13.
19.
go back to reference Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, et al. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. Eur J Nucl Med Mol Imaging. 2017;44:286–95.CrossRef Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, et al. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. Eur J Nucl Med Mol Imaging. 2017;44:286–95.CrossRef
20.
go back to reference Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 2020;18:e3000410.CrossRef Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 2020;18:e3000410.CrossRef
21.
go back to reference van Stralen KJ, Jager KJ, Zoccali C, Dekker FW. Agreement between methods. Kidney Int. 2008;74:1116–20.CrossRef van Stralen KJ, Jager KJ, Zoccali C, Dekker FW. Agreement between methods. Kidney Int. 2008;74:1116–20.CrossRef
22.
go back to reference Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25:141–51.CrossRef Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25:141–51.CrossRef
23.
go back to reference Rosar F, Buchholz HG, Michels S, Hoffmann MA, Piel M, Waldmann CM, et al. Image quality analysis of 44Sc on two preclinical PET scanners: a comparison to 68Ga. EJNMMI Phys. 2020;7:16. Rosar F, Buchholz HG, Michels S, Hoffmann MA, Piel M, Waldmann CM, et al. Image quality analysis of 44Sc on two preclinical PET scanners: a comparison to 68Ga. EJNMMI Phys. 2020;7:16.
24.
go back to reference Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: characterization of PET/CT and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med. 2015;56:1285–91.CrossRef Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: characterization of PET/CT and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med. 2015;56:1285–91.CrossRef
25.
go back to reference Aerts HJWL, Dubois L, Perk L, Vermaelen P, Van Dongen GAMS, Wouters BG, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med. 2009;50:123–31.CrossRef Aerts HJWL, Dubois L, Perk L, Vermaelen P, Van Dongen GAMS, Wouters BG, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med. 2009;50:123–31.CrossRef
26.
go back to reference Verel I, Visser GWM, Boellaard R, Boerman OC, van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med. 2003;44:1663–70.PubMed Verel I, Visser GWM, Boellaard R, Boerman OC, van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med. 2003;44:1663–70.PubMed
27.
go back to reference Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind JFH, Wahl RL. Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]fluoro-2-deoxy-D-glucose. Cancer Res. 2003;63:6252–7.PubMed Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind JFH, Wahl RL. Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]fluoro-2-deoxy-D-glucose. Cancer Res. 2003;63:6252–7.PubMed
28.
go back to reference Veldhuijzen van Zanten SEM, De Witt Hamer PC, van Dongen GAMS. Brain access of monoclonal antibodies as imaged and quantified by 89 Zr-antibody PET: perspectives for treatment of brain diseases. J Nucl Med. 2019;60:615–6.CrossRef Veldhuijzen van Zanten SEM, De Witt Hamer PC, van Dongen GAMS. Brain access of monoclonal antibodies as imaged and quantified by 89 Zr-antibody PET: perspectives for treatment of brain diseases. J Nucl Med. 2019;60:615–6.CrossRef
29.
go back to reference Teuho J, Riehakainen L, Honkaniemi A, Moisio O, Han C, Tirri M, et al. Evaluation of image quality with four positron emitters and three preclinical PET/CT systems. EJNMMI Res. 2020;10:155.CrossRef Teuho J, Riehakainen L, Honkaniemi A, Moisio O, Han C, Tirri M, et al. Evaluation of image quality with four positron emitters and three preclinical PET/CT systems. EJNMMI Res. 2020;10:155.CrossRef
30.
go back to reference Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Canadas M, et al. NEMA NU 4–2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53:1300–9.CrossRef Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Canadas M, et al. NEMA NU 4–2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53:1300–9.CrossRef
31.
go back to reference Gaitanis A, Kastis GA, Vlastou E, Bouziotis P, Verginis P, Anagnostopoulos CD. Investigation of image reconstruction parameters of the Mediso nanoScan PC small-animal PET/CT scanner for two different positron emitters under NEMA NU 4-2008 Standards. Mol Imaging Biol. 2017;19:550–9.CrossRef Gaitanis A, Kastis GA, Vlastou E, Bouziotis P, Verginis P, Anagnostopoulos CD. Investigation of image reconstruction parameters of the Mediso nanoScan PC small-animal PET/CT scanner for two different positron emitters under NEMA NU 4-2008 Standards. Mol Imaging Biol. 2017;19:550–9.CrossRef
Metadata
Title
Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice
Authors
Marion Chomet
Maxime Schreurs
Ricardo Vos
Mariska Verlaan
Esther J. Kooijman
Alex J. Poot
Ronald Boellaard
Albert D. Windhorst
Guus AMS van Dongen
Danielle J. Vugts
Marc C. Huisman
Wissam Beaino
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00799-2

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue