Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2020

01-08-2020 | Positron Emission Tomography | Original Article

Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging

Authors: Nicolas A. Karakatsanis, PhD, Ronan Abgral, MD, PhD, Maria Giovanna Trivieri, MD, PhD, Marc R. Dweck, MD, Philip M. Robson, PhD, Claudia Calcagno, MD, PhD, Gilles Boeykens, MD, Max L. Senders, MD, Willem J. M. Mulder, PhD, Charalampos Tsoumpas, PhD, Zahi A. Fayad, PhD

Published in: Journal of Nuclear Cardiology | Issue 4/2020

Login to get access

Abstract

Background

The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging.

Methods

We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD).

Results

In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication.

Conclusions

Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zaidi H, Karakatsanis N. Towards enhanced PET quantification in clinical oncology. Br J Radiol 2018;91:20170508.CrossRef Zaidi H, Karakatsanis N. Towards enhanced PET quantification in clinical oncology. Br J Radiol 2018;91:20170508.CrossRef
2.
go back to reference Hendel RC. The value and appropriateness of positron emission tomography: An evolving tale. J Nucl Cardiol 2015;22:16-21.CrossRef Hendel RC. The value and appropriateness of positron emission tomography: An evolving tale. J Nucl Cardiol 2015;22:16-21.CrossRef
3.
go back to reference Masuda A, Nemoto A, Takeishi Y. Technical aspects of cardiac PET/MRI. J Nucl Cardiol 2018;25:1023-8.CrossRef Masuda A, Nemoto A, Takeishi Y. Technical aspects of cardiac PET/MRI. J Nucl Cardiol 2018;25:1023-8.CrossRef
4.
go back to reference Nekolla SG, Martinez-Moller A. Attenuation correction in cardiac PET: To raise awareness for a problem which is as old as PET/CT. J Nucl Cardiol 2015;22:1296-9.CrossRef Nekolla SG, Martinez-Moller A. Attenuation correction in cardiac PET: To raise awareness for a problem which is as old as PET/CT. J Nucl Cardiol 2015;22:1296-9.CrossRef
5.
go back to reference Mok GSP, Ho CYT, Yang BH, Wu TH. Interpolated average CT for cardiac PET/CT attenuation correction. J Nucl Cardiol 2016;23:1072-9.CrossRef Mok GSP, Ho CYT, Yang BH, Wu TH. Interpolated average CT for cardiac PET/CT attenuation correction. J Nucl Cardiol 2016;23:1072-9.CrossRef
6.
go back to reference Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nat Med 2008;14:459-65.CrossRef Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nat Med 2008;14:459-65.CrossRef
7.
go back to reference Lairez O, Robson PM, Fayad ZA. Time to move to PET-MR for cardiovascular imaging. J Nucl Cardiol 2016;23:1112-3.CrossRef Lairez O, Robson PM, Fayad ZA. Time to move to PET-MR for cardiovascular imaging. J Nucl Cardiol 2016;23:1112-3.CrossRef
8.
go back to reference Schindler TH. Cardiovascular PET/MR imaging: Quo Vadis? J Nucl Cardiol 2017;24:1007-18.CrossRef Schindler TH. Cardiovascular PET/MR imaging: Quo Vadis? J Nucl Cardiol 2017;24:1007-18.CrossRef
9.
go back to reference Rischpler C, Langwieser N, Nekolla SG. Cardiac PET/MRI enters the clinical arena! Finally. J Nucl Cardiol 2018;25:795-6.CrossRef Rischpler C, Langwieser N, Nekolla SG. Cardiac PET/MRI enters the clinical arena! Finally. J Nucl Cardiol 2018;25:795-6.CrossRef
10.
go back to reference Nekolla SG, Cabello J. The foundation layer of quantitative cardiac PET/MRI: Attenuation correction. Again. J Nucl Cardiol 2017;24:847-50.CrossRef Nekolla SG, Cabello J. The foundation layer of quantitative cardiac PET/MRI: Attenuation correction. Again. J Nucl Cardiol 2017;24:847-50.CrossRef
11.
go back to reference Lau JMC, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 2017;24:839-46.CrossRef Lau JMC, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 2017;24:839-46.CrossRef
13.
go back to reference Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009;50:520-6.CrossRef Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009;50:520-6.CrossRef
14.
go back to reference Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G, et al. Whole-body PET/MR imaging: Quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med 2015;56:1061-6.CrossRef Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G, et al. Whole-body PET/MR imaging: Quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med 2015;56:1061-6.CrossRef
15.
go back to reference Oehmigen M, Lindemann ME, Gratz M, Kirchner J, Ruhlmann V, Umutlu L, et al. Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging 2018;45:642-53.CrossRef Oehmigen M, Lindemann ME, Gratz M, Kirchner J, Ruhlmann V, Umutlu L, et al. Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging 2018;45:642-53.CrossRef
16.
go back to reference Chen KT, Izquierdo-Garcia D, Poynton CB, Chonde DB, Catana C. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners. Eur J Nucl Med Mol Imaging 2017;44:398-407.CrossRef Chen KT, Izquierdo-Garcia D, Poynton CB, Chonde DB, Catana C. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners. Eur J Nucl Med Mol Imaging 2017;44:398-407.CrossRef
17.
go back to reference Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010;51:812-8.CrossRef Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010;51:812-8.CrossRef
18.
go back to reference Aasheim LB, Karlberg A, Goa PE, Haberg A, Sorhaug S, Fagerli UM, et al. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging 2015;42:1439-46.CrossRef Aasheim LB, Karlberg A, Goa PE, Haberg A, Sorhaug S, Fagerli UM, et al. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging 2015;42:1439-46.CrossRef
19.
go back to reference Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: Mechanisms and applications. J Nucl Med 2013;54:590-9.CrossRef Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: Mechanisms and applications. J Nucl Med 2013;54:590-9.CrossRef
20.
go back to reference Schramm G, Maus J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, et al. Correction of quantification errors in pelvic and spinal lesions caused by ignoring higher photon attenuation of bone in [18F]NaF PET/MR. Med Phys 2015;42:6468-76.CrossRef Schramm G, Maus J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, et al. Correction of quantification errors in pelvic and spinal lesions caused by ignoring higher photon attenuation of bone in [18F]NaF PET/MR. Med Phys 2015;42:6468-76.CrossRef
21.
go back to reference Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985;5:584-90.CrossRef Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985;5:584-90.CrossRef
22.
go back to reference Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 2015;60:8643-73.CrossRef Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 2015;60:8643-73.CrossRef
23.
go back to reference Karakatsanis NA, Abgral R, Boeykens G, Dweck MR, Robson PM, Trivieri MG, et al. 18F-FDG: 18F-NaF PET/MR multi-parametric imaging with kinetics-based bone segmentation for enhanced dual-tracer PET quantification. In: IEEE Nucl Sci Symp Med Imaging Conf, 2016. pp. 1-5. Karakatsanis NA, Abgral R, Boeykens G, Dweck MR, Robson PM, Trivieri MG, et al. 18F-FDG: 18F-NaF PET/MR multi-parametric imaging with kinetics-based bone segmentation for enhanced dual-tracer PET quantification. In: IEEE Nucl Sci Symp Med Imaging Conf, 2016. pp. 1-5.
24.
go back to reference van der Valk FM, Verweij SL, Zwinderman KA, Strang AC, Kaiser Y, Marquering HA, et al. Thresholds for arterial wall inflammation quantified by (18)F-FDG PET imaging: Implications for vascular interventional studies. JACC Cardiovasc Imaging 2016;9:1198-207.CrossRef van der Valk FM, Verweij SL, Zwinderman KA, Strang AC, Kaiser Y, Marquering HA, et al. Thresholds for arterial wall inflammation quantified by (18)F-FDG PET imaging: Implications for vascular interventional studies. JACC Cardiovasc Imaging 2016;9:1198-207.CrossRef
25.
go back to reference Johnsrud K, Skagen K, Seierstad T, Skjelland M, Russell D, Revheim ME. (18)F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol 2017;26:883-93.CrossRef Johnsrud K, Skagen K, Seierstad T, Skjelland M, Russell D, Revheim ME. (18)F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol 2017;26:883-93.CrossRef
26.
go back to reference Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 2015;6:7495.CrossRef Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 2015;6:7495.CrossRef
27.
go back to reference Hop H, de Boer SA, Reijrink M, Kamphuisen PW, de Borst MH, Pol RA, et al. (18)F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol 2018;26:1064-75.CrossRef Hop H, de Boer SA, Reijrink M, Kamphuisen PW, de Borst MH, Pol RA, et al. (18)F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol 2018;26:1064-75.CrossRef
28.
go back to reference Ferreira MJV, Oliveira-Santos M, Silva R, Gomes A, Ferreira N, Abrunhosa A, et al. Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT. J Nucl Cardiol 2018;25:1733-41.CrossRef Ferreira MJV, Oliveira-Santos M, Silva R, Gomes A, Ferreira N, Abrunhosa A, et al. Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT. J Nucl Cardiol 2018;25:1733-41.CrossRef
29.
go back to reference Hyafil F, Ferrag W, Kefti C, Le Guludec D. Fluoride imaging of atherosclerotic plaques: Moving from macro to microcalcifications? J Nucl Cardiol 2018;26:1076-8.CrossRef Hyafil F, Ferrag W, Kefti C, Le Guludec D. Fluoride imaging of atherosclerotic plaques: Moving from macro to microcalcifications? J Nucl Cardiol 2018;26:1076-8.CrossRef
30.
go back to reference Karakatsanis N, Trivieri M, Dweck M, Robson P, Abgral R, Soler R, et al. Simultaneous assessment of carotid plaque inflammation and micro-calcification with dual-tracer 18F-FDG: 18F-NaF PET-MR imaging: a clinical feasibility study. J Nucl Med 2017;58(suppl 1):446. Karakatsanis N, Trivieri M, Dweck M, Robson P, Abgral R, Soler R, et al. Simultaneous assessment of carotid plaque inflammation and micro-calcification with dual-tracer 18F-FDG: 18F-NaF PET-MR imaging: a clinical feasibility study. J Nucl Med 2017;58(suppl 1):446.
31.
go back to reference Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37(1):181-200.CrossRef Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37(1):181-200.CrossRef
32.
go back to reference Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, Fakhri GE. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci 2013;60:3373-82.CrossRef Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, Fakhri GE. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci 2013;60:3373-82.CrossRef
33.
go back to reference Karakatsanis N, Zhou Y, Lodge M, Casey M, Wahl R, Subramaniam R, et al. Clinical Whole-body PET Patlak imaging 60-90min post-injection employing a population-based input function. J Nucl Med 2015;56:1786.CrossRef Karakatsanis N, Zhou Y, Lodge M, Casey M, Wahl R, Subramaniam R, et al. Clinical Whole-body PET Patlak imaging 60-90min post-injection employing a population-based input function. J Nucl Med 2015;56:1786.CrossRef
34.
go back to reference Feng D, Huang SC, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 1993;32:95-110.CrossRef Feng D, Huang SC, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 1993;32:95-110.CrossRef
35.
go back to reference Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 2011;56:2375-89.CrossRef Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 2011;56:2375-89.CrossRef
36.
go back to reference Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011;52:1914-22.CrossRef Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011;52:1914-22.CrossRef
37.
go back to reference Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging 2015;42:1574-80.CrossRef Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging 2015;42:1574-80.CrossRef
38.
go back to reference Siddique M, Blake GM, Frost ML, Moore AE, Puri T, Marsden PK, et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. Eur J Nucl Med Mol Imaging 2012;39:337-43.CrossRef Siddique M, Blake GM, Frost ML, Moore AE, Puri T, Marsden PK, et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. Eur J Nucl Med Mol Imaging 2012;39:337-43.CrossRef
39.
go back to reference Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 2013;58:7391-418.CrossRef Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 2013;58:7391-418.CrossRef
40.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 2016;61:5456-85.CrossRef Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 2016;61:5456-85.CrossRef
Metadata
Title
Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging
Authors
Nicolas A. Karakatsanis, PhD
Ronan Abgral, MD, PhD
Maria Giovanna Trivieri, MD, PhD
Marc R. Dweck, MD
Philip M. Robson, PhD
Claudia Calcagno, MD, PhD
Gilles Boeykens, MD
Max L. Senders, MD
Willem J. M. Mulder, PhD
Charalampos Tsoumpas, PhD
Zahi A. Fayad, PhD
Publication date
01-08-2020
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2020
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-019-01928-0

Other articles of this Issue 4/2020

Journal of Nuclear Cardiology 4/2020 Go to the issue