Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 10/2020

01-09-2020 | Positron Emission Tomography | Original Article

Dynamic whole-body 18F-FDG PET for differentiating abnormal lesions from physiological uptake

Authors: Motoki Nishimura, Nagara Tamaki, Shigenori Matsushima, Maki Kiba, Tomoya Kotani, Chisa Bamba, Yasunori Nakamura, Kei Yamada

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 10/2020

Login to get access

Abstract

Purpose

Serial assessment of visual change in 18F-FDG uptake on whole-body 18F-FDG PET imaging was performed to differentiate pathological uptake from physiological uptake in the urinary and gastrointestinal tracts.

Methods

In 88 suspected cancer patients, serial 3-min dynamic whole-body PET imaging was performed four times, from 60 min after 18F-FDG administration. In dynamic image evaluation, high 18F-FDG uptake was evaluated by two nuclear medicine physicians and classified as “changed” or “unchanged” based on change in uptake shape over time. Detectability of pathological uptake based on these criteria was assessed and compared with conventional image evaluation.

Results

Dynamic whole-body PET imaging provided images of adequate quality for visual assessment. Dynamic image evaluation was “changed” in 118/154 regions of high physiological 18F-FDG uptake (77%): in 9/19 areas in the stomach (47%), in 32/39 in the small intestine (82%), in 17/33 in the colon (52%), and in 60/63 in the urinary tract (95%). In the 86 benign or malignant lesions, 84 lesions (98%) were “unchanged.” A high 18F-FDG uptake area that shows no change over time using these criteria is highly likely to represent pathological uptake, with sensitivity of 97%, specificity of 76%, PPV of 70%, NPV of 98%, and accuracy of 84%.

Conclusion

Dynamic whole-body 18F-FDG PET imaging enabled differentiation of pathological uptake from physiological uptake in the urinary and gastrointestinal tracts, based on visual change of uptake shape.
Literature
1.
go back to reference Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.CrossRef Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.CrossRef
2.
go back to reference El-Galaly TC, Gormsen LC, Hutchings M. PET/CT for staging: past, present, and future. Semin Nucl Med. 2017;48:4–16.CrossRef El-Galaly TC, Gormsen LC, Hutchings M. PET/CT for staging: past, present, and future. Semin Nucl Med. 2017;48:4–16.CrossRef
4.
go back to reference Dahlbom M, Reed J, Young J. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning. IEEE Trans Nucl Sci. 2001;48(4):1465–9.CrossRef Dahlbom M, Reed J, Young J. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning. IEEE Trans Nucl Sci. 2001;48(4):1465–9.CrossRef
5.
go back to reference Osborne DR, Acuff S, Cruise S, Syed M, Neveu M, Stuckey A, et al. Quantitative and qualitative comparison of continuous bed motion and traditional step and shoot PET/CT. Am J Nucl Med Mol Imaging. 2014;5(1):56–64.PubMedPubMedCentral Osborne DR, Acuff S, Cruise S, Syed M, Neveu M, Stuckey A, et al. Quantitative and qualitative comparison of continuous bed motion and traditional step and shoot PET/CT. Am J Nucl Med Mol Imaging. 2014;5(1):56–64.PubMedPubMedCentral
6.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456–85.CrossRef Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456–85.CrossRef
7.
go back to reference Braune A, Hofheinz F, Bluth T, Kiss T, Wittenstein J, Scharffenberg M, et al. Comparison of static 18F-FDG-PET/CT (SUV, SUR) and dynamic 18F-FDG-PET/CT (Ki) for quantification of pulmonary inflammation in acute lung injury. J Nucl Med. 2019;60(11):1629–34.CrossRef Braune A, Hofheinz F, Bluth T, Kiss T, Wittenstein J, Scharffenberg M, et al. Comparison of static 18F-FDG-PET/CT (SUV, SUR) and dynamic 18F-FDG-PET/CT (Ki) for quantification of pulmonary inflammation in acute lung injury. J Nucl Med. 2019;60(11):1629–34.CrossRef
8.
go back to reference Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46:501–18.CrossRef Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46:501–18.CrossRef
9.
go back to reference Gutman F, Alberini JL, Wartski M, Vilain D, Le Stanc E, Sarandi F, et al. Incidental colonic focal lesions detected by FDG PET/CT. Am J Roentgenol. 2005;185:495–500.CrossRef Gutman F, Alberini JL, Wartski M, Vilain D, Le Stanc E, Sarandi F, et al. Incidental colonic focal lesions detected by FDG PET/CT. Am J Roentgenol. 2005;185:495–500.CrossRef
10.
go back to reference Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology. 2002;224:783–7.CrossRef Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology. 2002;224:783–7.CrossRef
11.
go back to reference Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24:1411–31.CrossRef Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24:1411–31.CrossRef
12.
go back to reference Drenth JP, Nagengast FM, Oyen WJ. Evaluation of (pre-)malignant colonic abnormalities: endoscopic validation of FDG-PET findings. Eur J Nucl Med. 2001;28:1766–9.CrossRef Drenth JP, Nagengast FM, Oyen WJ. Evaluation of (pre-)malignant colonic abnormalities: endoscopic validation of FDG-PET findings. Eur J Nucl Med. 2001;28:1766–9.CrossRef
13.
go back to reference Kamel EM, Thumshirn M, Truninger K, Schiesser M, Fried M, Padberg B, et al. Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med. 2004;45:1804–10.PubMed Kamel EM, Thumshirn M, Truninger K, Schiesser M, Fried M, Padberg B, et al. Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med. 2004;45:1804–10.PubMed
14.
go back to reference Israel O, Yefremov N, Bar-Shalom R, Kagana O, Frenkel A, Keidar Z, et al. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med. 2005;46:758–62.PubMed Israel O, Yefremov N, Bar-Shalom R, Kagana O, Frenkel A, Keidar Z, et al. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med. 2005;46:758–62.PubMed
15.
go back to reference Shinya T, Rai K, Okumura Y, Fujiwara K, Matsuo K, Yonei T, et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. Clin Nucl Med. 2009;34:216–21.CrossRef Shinya T, Rai K, Okumura Y, Fujiwara K, Matsuo K, Yonei T, et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. Clin Nucl Med. 2009;34:216–21.CrossRef
16.
go back to reference Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.PubMed Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.PubMed
17.
go back to reference Nishiyama Y, Yamamoto Y, Monden T, Sasakawa Y, Tsutsui K, Wakabayashi H, et al. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl Med Commun. 2005;26:895–901.CrossRef Nishiyama Y, Yamamoto Y, Monden T, Sasakawa Y, Tsutsui K, Wakabayashi H, et al. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl Med Commun. 2005;26:895–901.CrossRef
18.
go back to reference Lin WY, Tsai SC, Hung GU. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun. 2005;26:315–21.CrossRef Lin WY, Tsai SC, Hung GU. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun. 2005;26:315–21.CrossRef
20.
go back to reference Naganawa S, Yoshikawa T, Yasaka K, Maeda E, Hyashi N, Abe O. Role of delayed-time-point imaging during abdominal and pelvic cancer screening using FDG-PET/CT in the general population. Medicine. 2017;96(46):e8832.CrossRef Naganawa S, Yoshikawa T, Yasaka K, Maeda E, Hyashi N, Abe O. Role of delayed-time-point imaging during abdominal and pelvic cancer screening using FDG-PET/CT in the general population. Medicine. 2017;96(46):e8832.CrossRef
23.
go back to reference Miyake KK, Nakamoto J, Torashi K. Dual-time-point 18F-FDG PET/CT in patients with colorectal cancer: clinical value of early delayed scanning. Ann Nucl Med. 2012;26:492–500.CrossRef Miyake KK, Nakamoto J, Torashi K. Dual-time-point 18F-FDG PET/CT in patients with colorectal cancer: clinical value of early delayed scanning. Ann Nucl Med. 2012;26:492–500.CrossRef
24.
go back to reference Uemura Y, Demura Y, Morikawa M, Anzai M, Kadowaki M, Ameshima S, et al. Prognostic value of dual-time-point 18F-FDG PET for idiopathic pulmonary fibrosis. J Nucl Med. 2015;56:1869–75.CrossRef Uemura Y, Demura Y, Morikawa M, Anzai M, Kadowaki M, Ameshima S, et al. Prognostic value of dual-time-point 18F-FDG PET for idiopathic pulmonary fibrosis. J Nucl Med. 2015;56:1869–75.CrossRef
25.
go back to reference Yoon HJ, Yoo J, Lee DH, Kim BS. Enhanced application of 18F-FDG PET/CT in bladder cancer by adding early dynamic acquisition to a standard delayed PET protocol. Clin Nucl Med. 2017;42(10):749–55.CrossRef Yoon HJ, Yoo J, Lee DH, Kim BS. Enhanced application of 18F-FDG PET/CT in bladder cancer by adding early dynamic acquisition to a standard delayed PET protocol. Clin Nucl Med. 2017;42(10):749–55.CrossRef
26.
go back to reference Humbert O, Lasserre M, Bertaut A, Fumoleau P, Coutant C, Brunotte F, et al. Breast cancer blood flow and metabolism on dual-acquisition 18F-FDG PET: correlation with tumor phenotype and neoadjuvant chemotherapy response. J Nucl Med. 2018;59:1035–41.CrossRef Humbert O, Lasserre M, Bertaut A, Fumoleau P, Coutant C, Brunotte F, et al. Breast cancer blood flow and metabolism on dual-acquisition 18F-FDG PET: correlation with tumor phenotype and neoadjuvant chemotherapy response. J Nucl Med. 2018;59:1035–41.CrossRef
27.
go back to reference van Sluis J, Boellaard R, Somasundaram A, van Snick P, Borra R, Dierckx R, et al. Image quality and semi-quantitative measurements of the Siemens Biograph Vision PET/CT: initial experiences and comparison with Siemens Biograph mCT PET/CT. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.119.227801. van Sluis J, Boellaard R, Somasundaram A, van Snick P, Borra R, Dierckx R, et al. Image quality and semi-quantitative measurements of the Siemens Biograph Vision PET/CT: initial experiences and comparison with Siemens Biograph mCT PET/CT. J Nucl Med. 2019. https://​doi.​org/​10.​2967/​jnumed.​119.​227801.
28.
go back to reference Nishimura M, Tamaki N, Matsushima S, Yamada S, Nii T, Domoto H, et al. Uptake changes on the whole-body dynamic 18F-FDG PET may assess tissue characterization. Comparison with the conventional delayed scan. J Nucl Med. 2019;60:1284.CrossRef Nishimura M, Tamaki N, Matsushima S, Yamada S, Nii T, Domoto H, et al. Uptake changes on the whole-body dynamic 18F-FDG PET may assess tissue characterization. Comparison with the conventional delayed scan. J Nucl Med. 2019;60:1284.CrossRef
Metadata
Title
Dynamic whole-body 18F-FDG PET for differentiating abnormal lesions from physiological uptake
Authors
Motoki Nishimura
Nagara Tamaki
Shigenori Matsushima
Maki Kiba
Tomoya Kotani
Chisa Bamba
Yasunori Nakamura
Kei Yamada
Publication date
01-09-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 10/2020
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-04726-w

Other articles of this Issue 10/2020

European Journal of Nuclear Medicine and Molecular Imaging 10/2020 Go to the issue