Skip to main content
Top
Published in: European Spine Journal 6/2017

01-06-2017 | Original Article

Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation

Authors: Bahe Hachem, Carl-Eric Aubin, Stefan Parent

Published in: European Spine Journal | Issue 6/2017

Login to get access

Abstract

Purpose

Developing fusionless devices to treat pediatric scoliosis necessitates lengthy and expensive animal trials. The objective was to develop and validate a porcine spine numerical model as an alternative platform to assess fusionless devices.

Methods

A parametric finite element model (FEM) of an osseoligamentous porcine spine and rib cage, including the epiphyseal growth plates, was developed. A follower-type load replicated physiological and gravitational loads. Vertebral growth and its modulation were programmed based on the Hueter–Volkmann principle, stipulating growth reduction/promotion due to increased compressive/tensile stresses. Scoliosis induction via a posterior tether and 5-level rib tethering, was simulated over 10 weeks along with its subsequent correction via a contralateral anterior custom tether (20 weeks). Scoliosis induction was also simulated using two experimentally tested compression-based fusionless implants (hemi- and rigid staples) over 12- and 8-weeks growth, respectively. Resulting simulated Cobb and sagittal angles, apical vertebral wedging, and left/right height alterations were compared to reported studies.

Results

Simulated induced Cobb and vertebral wedging were 48.4° and 7.6° and corrected to 21° and 5.4°, respectively, with the contralateral anterior tether. Apical rotation (15.6°) was corrected to 7.4°. With the hemi- and rigid staples, Cobb angle was 11.2° and 11.8°, respectively, with 3.7° and 2.0° vertebral wedging. Sagittal plane was within the published range. Convex/concave-side vertebral height difference was 3.1 mm with the induction posterior tether and reduced to 2.3 with the contralateral anterior tether, with 1.4 and 0.8 for the hemi- and rigid staples.

Conclusions

The FEM represented growth-restraining effects and growth modulation with Cobb and vertebral wedging within 0.6° and 1.9° of experimental animal results, while it was within 5° for the two simulated staples. Ultimately, the model would serve as a time- and cost-effective tool to assess the biomechanics and long-term effect of compression-based fusionless devices prior to animal trials, assisting the transfer towards treating scoliosis in the growing spine.
Literature
1.
go back to reference Stokes IA, Aronsson DD, Dimock AN et al (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24:1327–1334CrossRefPubMedPubMedCentral Stokes IA, Aronsson DD, Dimock AN et al (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24:1327–1334CrossRefPubMedPubMedCentral
2.
go back to reference Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine (Phila Pa 1976) 29:E455–E462CrossRef Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine (Phila Pa 1976) 29:E455–E462CrossRef
3.
go back to reference Betz RR, Ranade A, Samdani AF et al (2010) Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine (Phila Pa 1976) 35:169–176CrossRef Betz RR, Ranade A, Samdani AF et al (2010) Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine (Phila Pa 1976) 35:169–176CrossRef
5.
go back to reference Busscher I, Ploegmakers JJW, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19:1104–1114CrossRefPubMedPubMedCentral Busscher I, Ploegmakers JJW, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19:1104–1114CrossRefPubMedPubMedCentral
6.
go back to reference Roth AK, Bogie R, Jacobs E et al (2013) Large animal models in fusionless scoliosis correction research: a literature review. Spine J 13:675–688CrossRefPubMed Roth AK, Bogie R, Jacobs E et al (2013) Large animal models in fusionless scoliosis correction research: a literature review. Spine J 13:675–688CrossRefPubMed
7.
go back to reference Driscoll M, Aubin CE, Moreau A et al (2012) Spinal growth modulation using a novel intravertebral epiphyseal device in an immature porcine model. Eur Spine J 21:138–144CrossRefPubMed Driscoll M, Aubin CE, Moreau A et al (2012) Spinal growth modulation using a novel intravertebral epiphyseal device in an immature porcine model. Eur Spine J 21:138–144CrossRefPubMed
8.
go back to reference Moal B, Schwab F, Demakakos J et al (2013) The impact of a corrective tether on a scoliosis porcine model: a detailed 3D analysis with a 20 weeks follow-up. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22:1800–1809. doi:10.1007/s00586-013-2743-3 CrossRef Moal B, Schwab F, Demakakos J et al (2013) The impact of a corrective tether on a scoliosis porcine model: a detailed 3D analysis with a 20 weeks follow-up. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22:1800–1809. doi:10.​1007/​s00586-013-2743-3 CrossRef
9.
go back to reference Dimeglio A (2001) Growth in pediatric orthopaedics. J Pediatr Orthop 21:549–555PubMed Dimeglio A (2001) Growth in pediatric orthopaedics. J Pediatr Orthop 21:549–555PubMed
10.
go back to reference Huynh A-M, Aubin C-E, Rajwani T et al (2006) Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16:523–529CrossRefPubMedPubMedCentral Huynh A-M, Aubin C-E, Rajwani T et al (2006) Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16:523–529CrossRefPubMedPubMedCentral
11.
go back to reference Driscoll M, Aubin CE, Moreau A et al (2009) The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J 18:180–187CrossRefPubMedPubMedCentral Driscoll M, Aubin CE, Moreau A et al (2009) The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J 18:180–187CrossRefPubMedPubMedCentral
12.
go back to reference Shi L, Wang D, Driscoll M et al (2011) Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis 6:11CrossRefPubMedPubMedCentral Shi L, Wang D, Driscoll M et al (2011) Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis 6:11CrossRefPubMedPubMedCentral
14.
go back to reference Lafortune P, Aubin CE, Boulanger H et al (2007) Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study. Scoliosis 2:16CrossRefPubMedPubMedCentral Lafortune P, Aubin CE, Boulanger H et al (2007) Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study. Scoliosis 2:16CrossRefPubMedPubMedCentral
15.
go back to reference Kumar B, Bylski-Austrow DI, Liu Y (2012) Finite element model of spinal hemiepiphysiodesis: effect of contact conditions, initial conditions, and growth. Stud Heal Technol Inf 176:99–103 Kumar B, Bylski-Austrow DI, Liu Y (2012) Finite element model of spinal hemiepiphysiodesis: effect of contact conditions, initial conditions, and growth. Stud Heal Technol Inf 176:99–103
16.
go back to reference Akahoshi S, Sakai A, Arita S et al (2005) Modulation of bone turnover by alfacalcidol and/or alendronate does not prevent glucocorticoid-induced osteoporosis in growing minipig. J Bone Miner Metab 23:341–350CrossRefPubMed Akahoshi S, Sakai A, Arita S et al (2005) Modulation of bone turnover by alfacalcidol and/or alendronate does not prevent glucocorticoid-induced osteoporosis in growing minipig. J Bone Miner Metab 23:341–350CrossRefPubMed
17.
go back to reference Bozkus H, Crawford NR, Chamberlain RH et al (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19:1652–1665CrossRefPubMed Bozkus H, Crawford NR, Chamberlain RH et al (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19:1652–1665CrossRefPubMed
18.
go back to reference Ryan G, Pandit A, Apatsidis D (2008) Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Clin Biomech 23:859–869CrossRef Ryan G, Pandit A, Apatsidis D (2008) Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Clin Biomech 23:859–869CrossRef
19.
go back to reference Sergerie K, Lacoursière MO, Lévesque M, Villemure I (2009) Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J Biomech 42:510–516CrossRefPubMed Sergerie K, Lacoursière MO, Lévesque M, Villemure I (2009) Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J Biomech 42:510–516CrossRefPubMed
20.
go back to reference Kato N, Koshino T, Saito T, Takeuchi R (1998) Estimation of Young’s modulus in swine cortical bone using quantitative computed tomography. Bull Hosp Jt Dis 57:183–186PubMed Kato N, Koshino T, Saito T, Takeuchi R (1998) Estimation of Young’s modulus in swine cortical bone using quantitative computed tomography. Bull Hosp Jt Dis 57:183–186PubMed
21.
go back to reference Gillespie KA, Dickey JP (2004) Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine (Phila Pa 1976) 29:1208–1216CrossRef Gillespie KA, Dickey JP (2004) Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine (Phila Pa 1976) 29:1208–1216CrossRef
22.
23.
24.
go back to reference Schwab F, Patel A, Lafage V, Farcy JP (2009) A porcine model for progressive thoracic scoliosis. Spine (Phila Pa 1976) 34:E397–E404CrossRef Schwab F, Patel A, Lafage V, Farcy JP (2009) A porcine model for progressive thoracic scoliosis. Spine (Phila Pa 1976) 34:E397–E404CrossRef
25.
go back to reference Wall EJ, Bylski-Austrow DI, Kolata RJ, Crawford AH (2005) Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine (Phila Pa 1976) 30:1148–1153CrossRef Wall EJ, Bylski-Austrow DI, Kolata RJ, Crawford AH (2005) Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine (Phila Pa 1976) 30:1148–1153CrossRef
26.
go back to reference Glos DL, Boehm LA, Jain VV et al (2011) Coronal plane displacement gradient precedes vertebral growth modification using titanium spinal hemiepiphyseal implant. Orthop Res Soc Annu, Meet Glos DL, Boehm LA, Jain VV et al (2011) Coronal plane displacement gradient precedes vertebral growth modification using titanium spinal hemiepiphyseal implant. Orthop Res Soc Annu, Meet
27.
go back to reference Newton PO, Upasani VV, Farnsworth CL et al (2008) Spinal growth modulation with use of a tether in an immature porcine model. J Bone Jt Surg 90:2695–2706CrossRef Newton PO, Upasani VV, Farnsworth CL et al (2008) Spinal growth modulation with use of a tether in an immature porcine model. J Bone Jt Surg 90:2695–2706CrossRef
29.
go back to reference Cobetto N, Aubin CE, Parent S et al (2016) Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J 25:3056–3064. doi:10.1007/s00586-016-4434-3 CrossRefPubMed Cobetto N, Aubin CE, Parent S et al (2016) Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J 25:3056–3064. doi:10.​1007/​s00586-016-4434-3 CrossRefPubMed
31.
go back to reference Beguiristain JL, De Salis J, Oriaifo A, Canadell J (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3:317–321CrossRefPubMed Beguiristain JL, De Salis J, Oriaifo A, Canadell J (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3:317–321CrossRefPubMed
32.
go back to reference Agarwal A, Agarwal AK, Jayaswal A, Goel VK (2016) Effect of distraction force on growth and biomechanics of the spine: a finite element study on normal juvenile spine with dual growth rod instrumentation. Spine Deform 2:260–269. doi:10.1016/j.jspd.2014.03.007 CrossRef Agarwal A, Agarwal AK, Jayaswal A, Goel VK (2016) Effect of distraction force on growth and biomechanics of the spine: a finite element study on normal juvenile spine with dual growth rod instrumentation. Spine Deform 2:260–269. doi:10.​1016/​j.​jspd.​2014.​03.​007 CrossRef
33.
go back to reference Agarwal A, Zakeri A, Agarwal AK et al (2015) Distraction magnitude and frequency affects the outcome in juvenile idiopathic patients with growth rods: finite element study using a representative scoliotic spine model. Spine J. doi:10.1016/j.spinee.2015.04.003 PubMed Agarwal A, Zakeri A, Agarwal AK et al (2015) Distraction magnitude and frequency affects the outcome in juvenile idiopathic patients with growth rods: finite element study using a representative scoliotic spine model. Spine J. doi:10.​1016/​j.​spinee.​2015.​04.​003 PubMed
34.
go back to reference Agarwal A, Agarwal AK, Jayaswal A, Goel V (2016) Smaller interval distractions may reduce chances of growth rod breakage without impeding desired spinal growth: a finite element study. Spine Deform 2:430–436. doi:10.1016/j.jspd.2014.08.004 CrossRef Agarwal A, Agarwal AK, Jayaswal A, Goel V (2016) Smaller interval distractions may reduce chances of growth rod breakage without impeding desired spinal growth: a finite element study. Spine Deform 2:430–436. doi:10.​1016/​j.​jspd.​2014.​08.​004 CrossRef
Metadata
Title
Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation
Authors
Bahe Hachem
Carl-Eric Aubin
Stefan Parent
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 6/2017
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-016-4940-3

Other articles of this Issue 6/2017

European Spine Journal 6/2017 Go to the issue