Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2011

Open Access 01-12-2011 | Research

Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects

Authors: Lin Shi, Defeng Wang, Mark Driscoll, Isabelle Villemure, Winnie CW Chu, Jack CY Cheng, Carl-Eric Aubin

Published in: Scoliosis and Spinal Disorders | Issue 1/2011

Login to get access

Abstract

Background

The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period) on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine.

Methods

A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared.

Results

(1) Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2) Lateral deformities were absent in the models containing no initial coronal curvature. (3) The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4) Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects.

Conclusion

Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH: Etiology of Idiopathic Scoliosis: Current Trends in Research. J Bone Joint Surg Am. 2000, 82-A (8): 1157-1168.PubMed Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH: Etiology of Idiopathic Scoliosis: Current Trends in Research. J Bone Joint Surg Am. 2000, 82-A (8): 1157-1168.PubMed
2.
go back to reference Goldberg CJ, Dowling FE, Fogarty EE: Adolescent idiopathic scoliosis: is rising growth rate the triggering factor in progression?. European Spine Journal. 1993, 2 (1): 29-36. 10.1007/BF00301052.CrossRefPubMed Goldberg CJ, Dowling FE, Fogarty EE: Adolescent idiopathic scoliosis: is rising growth rate the triggering factor in progression?. European Spine Journal. 1993, 2 (1): 29-36. 10.1007/BF00301052.CrossRefPubMed
3.
go back to reference Sanders JO, Browne RH, Cooney TE, Finegold DN, McConnell SJ, Margraf SA: Correlates of the Peak Height Velocity in Girls With Idiopathic Scoliosis. Spine. 2006, 31 (20): 2289-2295. 10.1097/01.brs.0000236844.41595.26.CrossRefPubMed Sanders JO, Browne RH, Cooney TE, Finegold DN, McConnell SJ, Margraf SA: Correlates of the Peak Height Velocity in Girls With Idiopathic Scoliosis. Spine. 2006, 31 (20): 2289-2295. 10.1097/01.brs.0000236844.41595.26.CrossRefPubMed
4.
go back to reference Bjure J, Grimby G, Nachemson A: Correction of body height in predicting spirometric values in scoliotic patients. Scand J Clin Lab Invest. 1968, 21: 191-192.CrossRefPubMed Bjure J, Grimby G, Nachemson A: Correction of body height in predicting spirometric values in scoliotic patients. Scand J Clin Lab Invest. 1968, 21: 191-192.CrossRefPubMed
5.
go back to reference Hefti FL, McMaster MJ: The effect of the adolescent growth spurt on early posterior spinal fusion in infantile and juvenile idiopathic scoliosis. J Bone Joint Surg Br. 1983, 65: 247-254.PubMed Hefti FL, McMaster MJ: The effect of the adolescent growth spurt on early posterior spinal fusion in infantile and juvenile idiopathic scoliosis. J Bone Joint Surg Br. 1983, 65: 247-254.PubMed
6.
go back to reference Little DG, Song KM, Katz D, Herring JA: Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint SurgAm. 2000, 82: 685-693. Little DG, Song KM, Katz D, Herring JA: Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint SurgAm. 2000, 82: 685-693.
7.
go back to reference Song KM, Little DG: Peak height velocity as a maturity indicator for males with idiopathic scoliosis. J Pediatr Orthop. 2000, 20: 286-288. Song KM, Little DG: Peak height velocity as a maturity indicator for males with idiopathic scoliosis. J Pediatr Orthop. 2000, 20: 286-288.
8.
go back to reference Ylikoski M: Spinal growth and progression of adolescent idiopathic scoliosis. European Spine Journal. 1993, 1 (4): 236-239. 10.1007/BF00298366.CrossRefPubMed Ylikoski M: Spinal growth and progression of adolescent idiopathic scoliosis. European Spine Journal. 1993, 1 (4): 236-239. 10.1007/BF00298366.CrossRefPubMed
9.
go back to reference Nissinen M, Heliovaara M, Seitsamo J, Poussa M: Trunk asymmetry, posture, growth, and risk of scoliosis. A three-year followup of Finnish prepubertal school children. Spine. 1993, 18: 8-13. 10.1097/00007632-199301000-00002.CrossRefPubMed Nissinen M, Heliovaara M, Seitsamo J, Poussa M: Trunk asymmetry, posture, growth, and risk of scoliosis. A three-year followup of Finnish prepubertal school children. Spine. 1993, 18: 8-13. 10.1097/00007632-199301000-00002.CrossRefPubMed
10.
go back to reference Skogland LB, Miller JA: The length and proportions of the thoracolumbar spine in children with idiopathic scoliosis. Acta Orthop. Scandinavica. 1981, 52: 177-185. 10.3109/17453678108991778.CrossRef Skogland LB, Miller JA: The length and proportions of the thoracolumbar spine in children with idiopathic scoliosis. Acta Orthop. Scandinavica. 1981, 52: 177-185. 10.3109/17453678108991778.CrossRef
11.
go back to reference Guo X, Chau WW, Chan YL, Cheng JCY: Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. The Journal of Bone and Joint Surgery. 2003, 85-B: 1026-1031.CrossRef Guo X, Chau WW, Chan YL, Cheng JCY: Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. The Journal of Bone and Joint Surgery. 2003, 85-B: 1026-1031.CrossRef
12.
go back to reference Chu WC, Lam WW, Chan YL, Ng BK, Lam TP, Lee KM, Guo X, Cheng JC: Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine. 2006, 31: E19-25. 10.1097/01.brs.0000193892.20764.51.CrossRefPubMed Chu WC, Lam WW, Chan YL, Ng BK, Lam TP, Lee KM, Guo X, Cheng JC: Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine. 2006, 31: E19-25. 10.1097/01.brs.0000193892.20764.51.CrossRefPubMed
13.
go back to reference Chu WC, Man GC, Lam WW, Yeung BH, Chau WW, Ng BK, Lam TP, Lee KM, Cheng JC: Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine. 2008, 33: 673-680. 10.1097/BRS.0b013e318166aa58.CrossRefPubMed Chu WC, Man GC, Lam WW, Yeung BH, Chau WW, Ng BK, Lam TP, Lee KM, Cheng JC: Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine. 2008, 33: 673-680. 10.1097/BRS.0b013e318166aa58.CrossRefPubMed
14.
go back to reference Hägglund G, Karlberg J, Willner S: Growth in girls with adolescent idiopathic scoliosis. Spine. 1992, 17 (1): 108-111. 10.1097/00007632-199201000-00016.CrossRefPubMed Hägglund G, Karlberg J, Willner S: Growth in girls with adolescent idiopathic scoliosis. Spine. 1992, 17 (1): 108-111. 10.1097/00007632-199201000-00016.CrossRefPubMed
15.
go back to reference Stokes IA: Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J. 2007, 16 (10): 1621-1628. 10.1007/s00586-007-0442-7.CrossRefPubMedPubMedCentral Stokes IA: Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J. 2007, 16 (10): 1621-1628. 10.1007/s00586-007-0442-7.CrossRefPubMedPubMedCentral
16.
go back to reference Stokes IA, Spence H, Aronsson DD, Kilmer N: Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine. 1996, 21 (10): 1162-1167. 10.1097/00007632-199605150-00007.CrossRefPubMed Stokes IA, Spence H, Aronsson DD, Kilmer N: Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine. 1996, 21 (10): 1162-1167. 10.1097/00007632-199605150-00007.CrossRefPubMed
17.
go back to reference Azegami H, Murachi S, Kitoh J, Ishida Y, Kawakami N, Makino M: Etiology of idiopathic scoliosis: Computational study. Clin Orthop Relat Res. Dec. 1998, 229-236. 357 Azegami H, Murachi S, Kitoh J, Ishida Y, Kawakami N, Makino M: Etiology of idiopathic scoliosis: Computational study. Clin Orthop Relat Res. Dec. 1998, 229-236. 357
18.
go back to reference Plaats A, Veldhuizen AG, Verkerke GJ: Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng. 2007, 35 (7): 1206-1215. 10.1007/s10439-007-9256-3.CrossRefPubMedPubMedCentral Plaats A, Veldhuizen AG, Verkerke GJ: Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng. 2007, 35 (7): 1206-1215. 10.1007/s10439-007-9256-3.CrossRefPubMedPubMedCentral
19.
go back to reference Carrier J, Aubin CE, Villemure I, Labelle H: Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput. 2004, 42: 541-548. 10.1007/BF02350997.CrossRefPubMed Carrier J, Aubin CE, Villemure I, Labelle H: Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput. 2004, 42: 541-548. 10.1007/BF02350997.CrossRefPubMed
20.
go back to reference Huynh AM, Aubin CE, Rajwani T, Bagnall KM, Villemure I: Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J. 2007, 16: 523-529. 10.1007/s00586-006-0235-4.CrossRefPubMed Huynh AM, Aubin CE, Rajwani T, Bagnall KM, Villemure I: Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J. 2007, 16: 523-529. 10.1007/s00586-006-0235-4.CrossRefPubMed
21.
go back to reference Villemure I, Aubin CE, Dansereau J, Labelle H: Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng. 2002, 124: 784-790. 10.1115/1.1516198.CrossRefPubMed Villemure I, Aubin CE, Dansereau J, Labelle H: Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng. 2002, 124: 784-790. 10.1115/1.1516198.CrossRefPubMed
22.
go back to reference Villemure I, Aubin CE, Dansereau J, Labelle H: Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J. 2004, 13: 83-90. 10.1007/s00586-003-0565-4.CrossRefPubMedPubMedCentral Villemure I, Aubin CE, Dansereau J, Labelle H: Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J. 2004, 13: 83-90. 10.1007/s00586-003-0565-4.CrossRefPubMedPubMedCentral
23.
go back to reference Driscoll M, Aubin CE, Moreau A, Villemure I, Parent S: The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J. 2009, 18 (2): 180-187. 10.1007/s00586-008-0862-z.CrossRefPubMedPubMedCentral Driscoll M, Aubin CE, Moreau A, Villemure I, Parent S: The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J. 2009, 18 (2): 180-187. 10.1007/s00586-008-0862-z.CrossRefPubMedPubMedCentral
24.
go back to reference Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J: Assessment of the 3D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2D radiographic images. IEEE Trans Biomed Eng. 2003, 50: 989-998. 10.1109/TBME.2003.814525.CrossRefPubMed Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J: Assessment of the 3D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2D radiographic images. IEEE Trans Biomed Eng. 2003, 50: 989-998. 10.1109/TBME.2003.814525.CrossRefPubMed
25.
go back to reference Sylvestre PL, Villemure I, Aubin CE: Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput. 2007, 45: 977-988. 10.1007/s11517-007-0220-z.CrossRefPubMed Sylvestre PL, Villemure I, Aubin CE: Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput. 2007, 45: 977-988. 10.1007/s11517-007-0220-z.CrossRefPubMed
26.
go back to reference Price J, Oyajobi B, Russell R: The cell biology of bone growth. Eur J Clin Nutr. 1994, 48: 131-149. Price J, Oyajobi B, Russell R: The cell biology of bone growth. Eur J Clin Nutr. 1994, 48: 131-149.
27.
go back to reference Schultz A, Andersson GB, Ortengren R, Bjork R, Nordin M: Analysis and quantitative myoelectric measurements of loads on the lumbar spine when holding weights in standing postures. Spine. 1982, 7: 390-397. 10.1097/00007632-198207000-00009.CrossRefPubMed Schultz A, Andersson GB, Ortengren R, Bjork R, Nordin M: Analysis and quantitative myoelectric measurements of loads on the lumbar spine when holding weights in standing postures. Spine. 1982, 7: 390-397. 10.1097/00007632-198207000-00009.CrossRefPubMed
28.
go back to reference Patwardhan A, Havey R: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine. 1999, 24 (10): 1003-1009. 10.1097/00007632-199905150-00014.CrossRefPubMed Patwardhan A, Havey R: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine. 1999, 24 (10): 1003-1009. 10.1097/00007632-199905150-00014.CrossRefPubMed
29.
go back to reference Shirazi A, Parpianopour M: Load bearing and stress analysis of the human spine under a novel wrapping compression loading. 2000, 15: 718-725. Shirazi A, Parpianopour M: Load bearing and stress analysis of the human spine under a novel wrapping compression loading. 2000, 15: 718-725.
30.
go back to reference Dime'glio A, Bonnel F: Le rachis en croissance scoliose, taille assise et puberté. 1990, Springer-Verlag, Paris, New York Dime'glio A, Bonnel F: Le rachis en croissance scoliose, taille assise et puberté. 1990, Springer-Verlag, Paris, New York
31.
go back to reference Stokes IA: Mechanical effects on skeletal growth. J Musculoskel Neuron Interact. 2002, 2: 277-280. Stokes IA: Mechanical effects on skeletal growth. J Musculoskel Neuron Interact. 2002, 2: 277-280.
32.
go back to reference Stokes I, Aronsson D, Dimock A, Cortright V, Beck S: Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res. 2006, 24 (6): 1327-1333. 10.1002/jor.20189.CrossRefPubMedPubMedCentral Stokes I, Aronsson D, Dimock A, Cortright V, Beck S: Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res. 2006, 24 (6): 1327-1333. 10.1002/jor.20189.CrossRefPubMedPubMedCentral
33.
go back to reference Stokes IAF, Windisch L: Vertebral Height Growth Predominates Over Intervertebral Disc Height Growth in Adolescents With Scoliosis. Spine. 2006, 31 (14): 1600-1604. 10.1097/01.brs.0000222008.15750.1f.CrossRefPubMedPubMedCentral Stokes IAF, Windisch L: Vertebral Height Growth Predominates Over Intervertebral Disc Height Growth in Adolescents With Scoliosis. Spine. 2006, 31 (14): 1600-1604. 10.1097/01.brs.0000222008.15750.1f.CrossRefPubMedPubMedCentral
34.
go back to reference Stokes I, Aronsson D, Dimock A, Cortright , Beck S: Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J of Orthopaedic Research. 2006, 10: 1327-33.CrossRef Stokes I, Aronsson D, Dimock A, Cortright , Beck S: Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J of Orthopaedic Research. 2006, 10: 1327-33.CrossRef
35.
go back to reference Wilke H, Neef P, Caimi M, Hoogland T, Claes L: New In vivo measurements pressures intervertebral disc in daily life. Spine. 1999, 24 (8): 755-762. 10.1097/00007632-199904150-00005.CrossRefPubMed Wilke H, Neef P, Caimi M, Hoogland T, Claes L: New In vivo measurements pressures intervertebral disc in daily life. Spine. 1999, 24 (8): 755-762. 10.1097/00007632-199904150-00005.CrossRefPubMed
36.
go back to reference Stokes IA: Mechanical effects on skeletal growth. J Musculoskel Neuro Interact. 2002, 2: 277-280. Stokes IA: Mechanical effects on skeletal growth. J Musculoskel Neuro Interact. 2002, 2: 277-280.
37.
go back to reference Escalada F, Marco E, Duarte E, Ma Muniesa J, Boza R, Tejero M, Cáceres E: Assessment of angle velocity in girls with adolescent idiopathic scoliosis. Scoliosis. 2009, 4: 20-10.1186/1748-7161-4-20.CrossRefPubMedPubMedCentral Escalada F, Marco E, Duarte E, Ma Muniesa J, Boza R, Tejero M, Cáceres E: Assessment of angle velocity in girls with adolescent idiopathic scoliosis. Scoliosis. 2009, 4: 20-10.1186/1748-7161-4-20.CrossRefPubMedPubMedCentral
38.
go back to reference Stokes IA, Gookin DM, Reid S, Hazard RG: Effects of axis placement on measurement of isokinetic flexion and extension torque in the lumbar spine. J Spinal Disord. 1990, 3 (2): 114-118.CrossRefPubMed Stokes IA, Gookin DM, Reid S, Hazard RG: Effects of axis placement on measurement of isokinetic flexion and extension torque in the lumbar spine. J Spinal Disord. 1990, 3 (2): 114-118.CrossRefPubMed
39.
go back to reference Serrat MA, Lovejoy CO, King D: Age- and site-specific decline in insulin-like growth factor-I receptor expression is correlated with differential growth plate activity in the mouse hindlimb. Anat Rec (Hoboken). 2007, 290 (4): 375-381.CrossRef Serrat MA, Lovejoy CO, King D: Age- and site-specific decline in insulin-like growth factor-I receptor expression is correlated with differential growth plate activity in the mouse hindlimb. Anat Rec (Hoboken). 2007, 290 (4): 375-381.CrossRef
40.
go back to reference Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F: Do estrogens impact adolescent idiopathic scoliosis?. Trends Endocrinol Metab. 2009, 20 (4): 147-152. 10.1016/j.tem.2008.12.004.CrossRefPubMed Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F: Do estrogens impact adolescent idiopathic scoliosis?. Trends Endocrinol Metab. 2009, 20 (4): 147-152. 10.1016/j.tem.2008.12.004.CrossRefPubMed
Metadata
Title
Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects
Authors
Lin Shi
Defeng Wang
Mark Driscoll
Isabelle Villemure
Winnie CW Chu
Jack CY Cheng
Carl-Eric Aubin
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2011
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-6-11

Other articles of this Issue 1/2011

Scoliosis and Spinal Disorders 1/2011 Go to the issue