Skip to main content
Top
Published in: European Spine Journal 2/2009

01-02-2009 | Original Article

The role of spinal concave–convex biases in the progression of idiopathic scoliosis

Authors: Mark Driscoll, Carl-Eric Aubin, Alain Moreau, Isabelle Villemure, Stefan Parent

Published in: European Spine Journal | Issue 2/2009

Login to get access

Abstract

Inadequate understanding of risk factors involved in the progression of idiopathic scoliosis restrains initial treatment to observation until the deformity shows signs of significant aggravation. The purpose of this analysis is to explore whether the concave–convex biases associated with scoliosis (local degeneration of the intervertebral discs, nucleus migration, and local increase in trabecular bone-mineral density of vertebral bodies) may be identified as progressive risk factors. Finite element models of a 26° right thoracic scoliotic spine were constructed based on experimental and clinical observations that included growth dynamics governed by mechanical stimulus. Stress distribution over the vertebral growth plates, progression of Cobb angles, and vertebral wedging were explored in models with and without the biases of concave–convex properties. The inclusion of the bias of concave–convex properties within the model both augmented the asymmetrical loading of the vertebral growth plates by up to 37% and further amplified the progression of Cobb angles and vertebral wedging by as much as 5.9° and 0.8°, respectively. Concave–convex biases are factors that influence the progression of scoliotic curves. Quantifying these parameters in a patient with scoliosis may further provide a better clinical assessment of the risk of progression.
Literature
2.
go back to reference Adams M, McNally D, Wagstaff J, Goodship A (1993) Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause for disc failure? Eur Spine J 1:214–221. doi:10.1007/BF00298362 CrossRefPubMed Adams M, McNally D, Wagstaff J, Goodship A (1993) Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause for disc failure? Eur Spine J 1:214–221. doi:10.​1007/​BF00298362 CrossRefPubMed
4.
go back to reference Delorme S, Petit Y, De Guisse J, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic Images. IEEE Trans Biomed Eng 50:989–998. doi:10.1109/TBME.2003.814525 PubMedCrossRef Delorme S, Petit Y, De Guisse J, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic Images. IEEE Trans Biomed Eng 50:989–998. doi:10.​1109/​TBME.​2003.​814525 PubMedCrossRef
5.
go back to reference Dimeglio A, Ferran J (1990) Three-dimensional analysis of the hip during growth. Acta Orthop Belg 56:111–114PubMed Dimeglio A, Ferran J (1990) Three-dimensional analysis of the hip during growth. Acta Orthop Belg 56:111–114PubMed
6.
go back to reference Gilsanz V, Boechat M, Roe T, Loro M, Sayre J, Goodman W (1994) Gender difference in vertebral body sizes in children and adolescents. Radiology 190:673–677PubMed Gilsanz V, Boechat M, Roe T, Loro M, Sayre J, Goodman W (1994) Gender difference in vertebral body sizes in children and adolescents. Radiology 190:673–677PubMed
8.
10.
go back to reference He Y, Qiu Y, Zhu Z (2006) Quantitative analysis of types I and II collagen in the disc annulus in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:123–128PubMed He Y, Qiu Y, Zhu Z (2006) Quantitative analysis of types I and II collagen in the disc annulus in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:123–128PubMed
12.
go back to reference Huynh A, Aubin CE, Mathieu P, Labelle H (2007) Simulation of progressive spinal deformities in duchenne muscular dystrophy using a biomechanical model integrating muscle and vertebral growth modulation. Clin Biomech (Bristol, Avon) 22:392–399. doi:10.1016/j.clinbiomech.2006.11.010 CrossRef Huynh A, Aubin CE, Mathieu P, Labelle H (2007) Simulation of progressive spinal deformities in duchenne muscular dystrophy using a biomechanical model integrating muscle and vertebral growth modulation. Clin Biomech (Bristol, Avon) 22:392–399. doi:10.​1016/​j.​clinbiomech.​2006.​11.​010 CrossRef
16.
go back to reference Kilincer C, Inceoglu S, Sohn M, Ferrada L, Bakirci N, Benzel E (2007) Load sharing within a human thoracic vertebral body: an in vitro biomechanical study. Turk Neurosurg 17:167–177PubMed Kilincer C, Inceoglu S, Sohn M, Ferrada L, Bakirci N, Benzel E (2007) Load sharing within a human thoracic vertebral body: an in vitro biomechanical study. Turk Neurosurg 17:167–177PubMed
17.
go back to reference Li S, Patwardhan A, Amirouche F, Harvey R, Meade K (1995) Limitations of the standard linear solid model of intervertebral disc subject to prolonged loading and low-frequency vibration in axial compression. J Biomech 28:779–790. doi:10.1016/0021-9290(94)00140-Y PubMedCrossRef Li S, Patwardhan A, Amirouche F, Harvey R, Meade K (1995) Limitations of the standard linear solid model of intervertebral disc subject to prolonged loading and low-frequency vibration in axial compression. J Biomech 28:779–790. doi:10.​1016/​0021-9290(94)00140-Y PubMedCrossRef
19.
go back to reference Mehlman C, Araghi A, Roy D (1997) Hyphenated history: the Hueter–Volkmann law. Am J Orthop 26:798–800PubMed Mehlman C, Araghi A, Roy D (1997) Hyphenated history: the Hueter–Volkmann law. Am J Orthop 26:798–800PubMed
21.
22.
go back to reference Nachemson A (1965) In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderately degenerated discs. Acta Orthop Scand 36:418–434PubMedCrossRef Nachemson A (1965) In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderately degenerated discs. Acta Orthop Scand 36:418–434PubMedCrossRef
23.
go back to reference Nanjo Y, Morio Y, Nagashima H, Hagino H, Teshima R (2003) Correlation between bone mineral density and intervertebral disc degeneration in pre- and postmenopausal women. J Bone Miner Metab 21:22–27. doi:10.1007/s007740300004 PubMedCrossRef Nanjo Y, Morio Y, Nagashima H, Hagino H, Teshima R (2003) Correlation between bone mineral density and intervertebral disc degeneration in pre- and postmenopausal women. J Bone Miner Metab 21:22–27. doi:10.​1007/​s007740300004 PubMedCrossRef
24.
go back to reference Nielson D, McEvoy F, Madsen M, Jensen J, Svalastoga E (2007) Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs. J Anim Sci 85:667–672. doi:10.2527/jas.2006-025 CrossRef Nielson D, McEvoy F, Madsen M, Jensen J, Svalastoga E (2007) Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs. J Anim Sci 85:667–672. doi:10.​2527/​jas.​2006-025 CrossRef
28.
30.
go back to reference Price J, Oyajobi B, Russell R (1994) The cell biology of bone growth. Eur J Clin Nutr 48:131–149 Price J, Oyajobi B, Russell R (1994) The cell biology of bone growth. Eur J Clin Nutr 48:131–149
32.
go back to reference Schultz A, Andersson G, Ortengren R, Nachemson A (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurement of intradiscal pressures and myoelectric signals. J Bone Joint Surg 64:713–720PubMed Schultz A, Andersson G, Ortengren R, Nachemson A (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurement of intradiscal pressures and myoelectric signals. J Bone Joint Surg 64:713–720PubMed
34.
go back to reference Stokes I, Aronsson D, Dimock A, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24(6):1327–1333. doi:10.1002/jor.20189 PubMedCrossRef Stokes I, Aronsson D, Dimock A, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24(6):1327–1333. doi:10.​1002/​jor.​20189 PubMedCrossRef
38.
go back to reference Villemure I, Aubin CE, Dansereau J (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth. J Biomed Eng 124(6):784–790 Villemure I, Aubin CE, Dansereau J (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth. J Biomed Eng 124(6):784–790
40.
go back to reference Wilke H, Neef P, Caimi M, Hoogland T, Claes L (1999) New In vivo measurements pressures intervertebral disc in daily life. Spine 24(8):755–762PubMedCrossRef Wilke H, Neef P, Caimi M, Hoogland T, Claes L (1999) New In vivo measurements pressures intervertebral disc in daily life. Spine 24(8):755–762PubMedCrossRef
41.
go back to reference Wolff J (1892) Das Gesetz der Transformation der Knoche. Hirshwald, Berlin Wolff J (1892) Das Gesetz der Transformation der Knoche. Hirshwald, Berlin
42.
go back to reference Yerramalli C, Chou A, Miller G, Nicoll S, Chin K, Elliot D (2007) The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 6:13–20. doi:10.1007/s10237-006-0043-0 PubMedCrossRef Yerramalli C, Chou A, Miller G, Nicoll S, Chin K, Elliot D (2007) The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 6:13–20. doi:10.​1007/​s10237-006-0043-0 PubMedCrossRef
Metadata
Title
The role of spinal concave–convex biases in the progression of idiopathic scoliosis
Authors
Mark Driscoll
Carl-Eric Aubin
Alain Moreau
Isabelle Villemure
Stefan Parent
Publication date
01-02-2009
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 2/2009
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-008-0862-z

Other articles of this Issue 2/2009

European Spine Journal 2/2009 Go to the issue