Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Research

Polymicrobial synergy stimulates Porphyromonas gingivalis survival and gingipain expression in a multi-species subgingival community

Authors: Julia R. Davies, Trupti Kad, Jessica Neilands, Bertil Kinnby, Zdenka Prgomet, Torbjörn Bengtsson, Hazem Khalaf, Gunnel Svensäter

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Dysbiosis in subgingival microbial communities, resulting from increased inflammatory transudate from the gingival tissues, is an important factor in initiation and development of periodontitis. Dysbiotic communities are characterized by increased numbers of bacteria that exploit the serum-like transudate for nutrients, giving rise to a proteolytic community phenotype. Here we investigate the contribution of interactions between members of a sub-gingival community to survival and development of virulence in a serum environment—modelling that in the subgingival pocket.

Methods

Growth and proteolytic activity of three Porphyromonas gingivalis strains in nutrient broth or a serum environment were assessed using A600 and a fluorescent protease substrate, respectively. Adherence of P. gingivalis strains to serum-coated surfaces was studied with confocal microscopy and 2D-gel electrophoresis of bacterial supernatants used to investigate extracellular proteins. A model multi-species sub-gingival community containing Fusobacterium nucleatum, Streptococcus constellatus, Parvimonas micra with wild type or isogenic mutants of P. gingivalis was then created and growth and proteolytic activity in serum assessed as above. Community composition over time was monitored using culture techniques and qPCR.

Results

The P. gingivalis strains showed different growth rates in nutrient broth related to the level of proteolytic activity (largely gingipains) in the cultures. Despite being able to adhere to serum-coated surfaces, none of the strains was able to grow alone in a serum environment. Together in the subgingival consortium however, all the included species were able to grow in the serum environment and the community adopted a proteolytic phenotype. Inclusion of P. gingivalis strains lacking gingipains in the consortium revealed that community growth was facilitated by Rgp gingipain from P. gingivalis.

Conclusions

In the multi-species consortium, growth was facilitated by the wild-type and Rgp-expressing strains of P. gingivalis, suggesting that Rgp is involved in delivery of nutrients to the whole community through degradation of complex protein substrates in serum. Whereas they are constitutively expressed by P. gingivalis in nutrient broth, gingipain expression in the model periodontal pocket environment (serum) appeared to be orchestrated through signaling to P. gingivalis from other members of the community, a phenomenon which then promoted growth of the whole community.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E. The oral microbiome: an update for oral health professionals. Br Dent J. 2016;18:657–66.CrossRef Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E. The oral microbiome: an update for oral health professionals. Br Dent J. 2016;18:657–66.CrossRef
3.
4.
go back to reference Swedish Council on Health Technology Assessment in Health Care (SBU). Chronic periodontitis–prevention, diagnosis and treatment. Stockholm: 2004. Report no 169 (in Swedish). Summary and conclusions in English. Swedish Council on Health Technology Assessment in Health Care (SBU). Chronic periodontitis–prevention, diagnosis and treatment. Stockholm: 2004. Report no 169 (in Swedish). Summary and conclusions in English.
5.
go back to reference Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96:380–7.PubMedCrossRef Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96:380–7.PubMedCrossRef
6.
go back to reference Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol. 2000;2002(28):12–55. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol. 2000;2002(28):12–55.
7.
go back to reference Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):12–22.CrossRef Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):12–22.CrossRef
8.
go back to reference Rosier TB, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J Dent Res. 2018;97:371–80.PubMedCrossRef Rosier TB, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J Dent Res. 2018;97:371–80.PubMedCrossRef
9.
go back to reference Jakubovics NS. Intermicrobial interactions as a driver for community composition and stratification of oral biofilms. J Mol Biol. 2015;427:3662–72.PubMedCrossRef Jakubovics NS. Intermicrobial interactions as a driver for community composition and stratification of oral biofilms. J Mol Biol. 2015;427:3662–72.PubMedCrossRef
10.
go back to reference Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–44.PubMedCrossRef Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–44.PubMedCrossRef
11.
go back to reference Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2017;7:1016–25.CrossRef Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2017;7:1016–25.CrossRef
14.
go back to reference Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;17:497–506.CrossRef Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;17:497–506.CrossRef
15.
go back to reference Zenobia C, Hajishengallis G. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence. 2015;6:236–43.PubMedPubMedCentralCrossRef Zenobia C, Hajishengallis G. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence. 2015;6:236–43.PubMedPubMedCentralCrossRef
16.
go back to reference O’Brien-Simpson NM, Paolini RA, Hoffmann B, Slakeski N, Dashper SG, Reynolds EC. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun. 2001;69:7527–34.PubMedPubMedCentralCrossRef O’Brien-Simpson NM, Paolini RA, Hoffmann B, Slakeski N, Dashper SG, Reynolds EC. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun. 2001;69:7527–34.PubMedPubMedCentralCrossRef
17.
go back to reference Lang NP, Tonetti MS. Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev Dent. 2003;1:7–16.PubMed Lang NP, Tonetti MS. Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev Dent. 2003;1:7–16.PubMed
18.
go back to reference Davies JR, Svensäter G, Herzberg MC. Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology. 2009;155:1977–88.PubMedPubMedCentralCrossRef Davies JR, Svensäter G, Herzberg MC. Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology. 2009;155:1977–88.PubMedPubMedCentralCrossRef
19.
go back to reference Kuboniwa M, Amano A, Kimura KR, Sekine S, Kato S, Yamamoto Y, Okahashi N, Iida T, Shizukuishi S. Quantitative detection of periodontal pathogens using real-time polymerase chain reaction with TaqMan probes. Oral Microbiol Immunol. 2004;19:168–76.PubMedCrossRef Kuboniwa M, Amano A, Kimura KR, Sekine S, Kato S, Yamamoto Y, Okahashi N, Iida T, Shizukuishi S. Quantitative detection of periodontal pathogens using real-time polymerase chain reaction with TaqMan probes. Oral Microbiol Immunol. 2004;19:168–76.PubMedCrossRef
20.
go back to reference Schwarz F, Becker K, Rahn S, Hegewald A, Pfeffer K, Henrich B. Real-time PCR analysis of fungal organisms and bacterial species at peri-implantitis sites. Int J Implant Dent. 2015;1:9.PubMedPubMedCentralCrossRef Schwarz F, Becker K, Rahn S, Hegewald A, Pfeffer K, Henrich B. Real-time PCR analysis of fungal organisms and bacterial species at peri-implantitis sites. Int J Implant Dent. 2015;1:9.PubMedPubMedCentralCrossRef
21.
go back to reference Suzuki N, Yoshida A, Saito T, Kawada M, Nakano Y. Quantitative microbiological study of subgingival plaque by real-time PCR shows correlation between levels of Tannerella forsythensis and Fusobacterium spp. J Clin Microbiol. 2004;42:2255–7.PubMedPubMedCentralCrossRef Suzuki N, Yoshida A, Saito T, Kawada M, Nakano Y. Quantitative microbiological study of subgingival plaque by real-time PCR shows correlation between levels of Tannerella forsythensis and Fusobacterium spp. J Clin Microbiol. 2004;42:2255–7.PubMedPubMedCentralCrossRef
22.
go back to reference Dalwai F, Spratt DA, Pratten J. Use of quantitative PCR and culture methods to characterize ecological flux in bacterial biofilms. J Clin Microbiol. 2007;45:3072–6.PubMedPubMedCentralCrossRef Dalwai F, Spratt DA, Pratten J. Use of quantitative PCR and culture methods to characterize ecological flux in bacterial biofilms. J Clin Microbiol. 2007;45:3072–6.PubMedPubMedCentralCrossRef
23.
go back to reference Kinnby B, Chávez de Paz LE. Plasminogen coating increases initial adhesion of oral bacteria in vitro. Microb Pathogen. 2016;100:10–6.CrossRef Kinnby B, Chávez de Paz LE. Plasminogen coating increases initial adhesion of oral bacteria in vitro. Microb Pathogen. 2016;100:10–6.CrossRef
24.
go back to reference Sunde PT, Olsen I, Göbel UB, Theegarten D, Winter S, Debelian GJ, Tronstad L, Moter A. Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology. 2003;149:1095–102.PubMedCrossRef Sunde PT, Olsen I, Göbel UB, Theegarten D, Winter S, Debelian GJ, Tronstad L, Moter A. Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology. 2003;149:1095–102.PubMedCrossRef
25.
go back to reference Juretschko S, Fritsche T. Applications of fluorescence in situ hybridization in diagnostic microbiology. In: Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A, editors. Molecular microbiology. Washington, DC: ASM Press; 2011. p. 3–19. Juretschko S, Fritsche T. Applications of fluorescence in situ hybridization in diagnostic microbiology. In: Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A, editors. Molecular microbiology. Washington, DC: ASM Press; 2011. p. 3–19.
26.
go back to reference Wildeboer-Veloo ACM, Harmsen HJM, Welling GW, Degener JE. Development of 16S rRNA-based probes for the identification of Gram-positive anaerobic cocci isolated from human clinical specimens. Clin Microbiol Infect. 2007;13:985–92.PubMedCrossRef Wildeboer-Veloo ACM, Harmsen HJM, Welling GW, Degener JE. Development of 16S rRNA-based probes for the identification of Gram-positive anaerobic cocci isolated from human clinical specimens. Clin Microbiol Infect. 2007;13:985–92.PubMedCrossRef
27.
go back to reference Paster BJ, Bartoszyk IM, Dewhirst FE. Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci. 1998;20:223–31.CrossRef Paster BJ, Bartoszyk IM, Dewhirst FE. Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci. 1998;20:223–31.CrossRef
28.
go back to reference Horiuchi A, Kokubu E, Warita T, Ishihara K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe. 2020;62:102100.PubMedCrossRef Horiuchi A, Kokubu E, Warita T, Ishihara K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe. 2020;62:102100.PubMedCrossRef
29.
go back to reference Ho M-H, Lamont R, Xie H. Identification of Streptococcus cristatus peptides the repress expression of virulence genes in Porphyromonas gingivalis. Sci Rep. 2017;7:1413.PubMedPubMedCentralCrossRef Ho M-H, Lamont R, Xie H. Identification of Streptococcus cristatus peptides the repress expression of virulence genes in Porphyromonas gingivalis. Sci Rep. 2017;7:1413.PubMedPubMedCentralCrossRef
30.
go back to reference Handley PS, Tipler LS. An electron microscope survey of the surface structures and hydrophobicity of oral and non-oral species of the bacterial genus Bacteroides. Arch Oral Biol. 1986;31:325–35.PubMedCrossRef Handley PS, Tipler LS. An electron microscope survey of the surface structures and hydrophobicity of oral and non-oral species of the bacterial genus Bacteroides. Arch Oral Biol. 1986;31:325–35.PubMedCrossRef
31.
go back to reference Sojar HT, Hamada N, Genco RJ. Isolation and characterization of fimbriae from a sparsely fimbriated strain of Porphyromonas gingivalis. Appl Environ Microbiol. 1997;63:2318–23.PubMedPubMedCentralCrossRef Sojar HT, Hamada N, Genco RJ. Isolation and characterization of fimbriae from a sparsely fimbriated strain of Porphyromonas gingivalis. Appl Environ Microbiol. 1997;63:2318–23.PubMedPubMedCentralCrossRef
32.
go back to reference Sojar HT, Smith DF. Porphyromonas gingivalis fimbriae carbohydrate specificity assessment by glycomics. FEMS Immunol Med Microbiol. 2012;66:83–7.PubMedCrossRef Sojar HT, Smith DF. Porphyromonas gingivalis fimbriae carbohydrate specificity assessment by glycomics. FEMS Immunol Med Microbiol. 2012;66:83–7.PubMedCrossRef
33.
go back to reference Maeda K, Nagata H, Yamamoto Y, Tanaka M, Tanaka J, Minamino N, Shizukuishi S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a co-adhesin for Porphyromonas gingivalis major fimbriae. Infect Immun. 2004;72:1341–8.PubMedPubMedCentralCrossRef Maeda K, Nagata H, Yamamoto Y, Tanaka M, Tanaka J, Minamino N, Shizukuishi S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a co-adhesin for Porphyromonas gingivalis major fimbriae. Infect Immun. 2004;72:1341–8.PubMedPubMedCentralCrossRef
34.
go back to reference Seers CA, Mahmud SM, Huq NL, Cross KJ, Reynolds EC. Porphyromonas gingivalis laboratory strains and clinical isolates exhibit different distribution of cell surface and secreted gingipains. J Oral Microbiol. 2020;13:1–14. Seers CA, Mahmud SM, Huq NL, Cross KJ, Reynolds EC. Porphyromonas gingivalis laboratory strains and clinical isolates exhibit different distribution of cell surface and secreted gingipains. J Oral Microbiol. 2020;13:1–14.
35.
go back to reference Curtis MA, Aduse-Opoku J, Rangarajan M. Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med. 2001;12:192–216.PubMedCrossRef Curtis MA, Aduse-Opoku J, Rangarajan M. Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med. 2001;12:192–216.PubMedCrossRef
36.
go back to reference Silva IL, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol. 2021;433:166836.CrossRef Silva IL, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol. 2021;433:166836.CrossRef
37.
go back to reference Kondo Y, Ohara N, Sato K, Yoshimura M, Yukitake H, Naito M, Fujiwara T, Nakayama K. Tetratricopeptide repeat protein-associated proteins contribute to the virulence of Porphyromonas gingivalis. Infect Immun. 2010;78:2846–56.PubMedPubMedCentralCrossRef Kondo Y, Ohara N, Sato K, Yoshimura M, Yukitake H, Naito M, Fujiwara T, Nakayama K. Tetratricopeptide repeat protein-associated proteins contribute to the virulence of Porphyromonas gingivalis. Infect Immun. 2010;78:2846–56.PubMedPubMedCentralCrossRef
38.
go back to reference Stobernack T, Glasner C, Junker S, Gabarrini G, de Smit M, de Jong A, Otto A, Becher D, van Winkelhoff AJ, van Dijl JM. Extracellular proteome and citrullinome of the oral pathogen Porphyromonas gingivalis. J Proteome Res. 2016;15:4532–45.PubMedCrossRef Stobernack T, Glasner C, Junker S, Gabarrini G, de Smit M, de Jong A, Otto A, Becher D, van Winkelhoff AJ, van Dijl JM. Extracellular proteome and citrullinome of the oral pathogen Porphyromonas gingivalis. J Proteome Res. 2016;15:4532–45.PubMedCrossRef
39.
go back to reference Leduc A, Grenier D, Meyrand D. Comparative growth of Porphyromonas gingivalis strains in a defined basal medium. Anaerobe. 1996;2:257–61.PubMedCrossRef Leduc A, Grenier D, Meyrand D. Comparative growth of Porphyromonas gingivalis strains in a defined basal medium. Anaerobe. 1996;2:257–61.PubMedCrossRef
40.
go back to reference Grenier D, Imbeault S, Plamondon P, Grenier G, Nakayama K, Mayrand D. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun. 2001;69:5166–72.PubMedPubMedCentralCrossRef Grenier D, Imbeault S, Plamondon P, Grenier G, Nakayama K, Mayrand D. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun. 2001;69:5166–72.PubMedPubMedCentralCrossRef
41.
go back to reference Lui X, Sroka A, Potempa J, Genco CA. Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor. HmuR Biol Chem. 2004;385:1049–57.CrossRef Lui X, Sroka A, Potempa J, Genco CA. Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor. HmuR Biol Chem. 2004;385:1049–57.CrossRef
42.
go back to reference ter Steeg PF, Van der Hoeven JS, de Jong MH, van Munster PJ, Jansen MJ. Enrichment of subgingival microflora on human serum leading to accumulation of Bacteroides species, Peptostreptococci and Fusobacteria. Antonie Van Leeuwenhoek. 1987;53:261–72.PubMedCrossRef ter Steeg PF, Van der Hoeven JS, de Jong MH, van Munster PJ, Jansen MJ. Enrichment of subgingival microflora on human serum leading to accumulation of Bacteroides species, Peptostreptococci and Fusobacteria. Antonie Van Leeuwenhoek. 1987;53:261–72.PubMedCrossRef
43.
go back to reference ter Steeg PF, Van der Hoeven JS. Growth stimulation of Treponema denticola by periodontal microorganisms. Antonie Van Leeuwenhoek. 1980;57:63–70.CrossRef ter Steeg PF, Van der Hoeven JS. Growth stimulation of Treponema denticola by periodontal microorganisms. Antonie Van Leeuwenhoek. 1980;57:63–70.CrossRef
44.
go back to reference Wickström C, Herzberg MC, Beighton D, Svensäter G. Proteolytic degradation of human salivary mucin MUC5B by dental biofilms. Microbiology. 2009;155:2866–72.PubMedPubMedCentralCrossRef Wickström C, Herzberg MC, Beighton D, Svensäter G. Proteolytic degradation of human salivary mucin MUC5B by dental biofilms. Microbiology. 2009;155:2866–72.PubMedPubMedCentralCrossRef
45.
go back to reference Doron L, Coppenhagen-Glazer S, Ibrahim Y, Eini A, Naor R, Rosen G, Bachrach G. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease. PLoS ONE. 2014;9(10):e111329.PubMedPubMedCentralCrossRef Doron L, Coppenhagen-Glazer S, Ibrahim Y, Eini A, Naor R, Rosen G, Bachrach G. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease. PLoS ONE. 2014;9(10):e111329.PubMedPubMedCentralCrossRef
46.
go back to reference Neilands J, Davies JR, Bikker FJ, Svensäter G. Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe. 2018;55:54–60.PubMedCrossRef Neilands J, Davies JR, Bikker FJ, Svensäter G. Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe. 2018;55:54–60.PubMedCrossRef
Metadata
Title
Polymicrobial synergy stimulates Porphyromonas gingivalis survival and gingipain expression in a multi-species subgingival community
Authors
Julia R. Davies
Trupti Kad
Jessica Neilands
Bertil Kinnby
Zdenka Prgomet
Torbjörn Bengtsson
Hazem Khalaf
Gunnel Svensäter
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01971-9

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue