Skip to main content
Top
Published in: European Radiology 3/2020

01-03-2020 | Pneumothorax | Chest

Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings

Authors: Sohee Park, Sang Min Lee, Kyung Hee Lee, Kyu-Hwan Jung, Woong Bae, Jooae Choe, Joon Beom Seo

Published in: European Radiology | Issue 3/2020

Login to get access

Abstract

Objective

To investigate the feasibility of a deep learning–based detection (DLD) system for multiclass lesions on chest radiograph, in comparison with observers.

Methods

A total of 15,809 chest radiographs were collected from two tertiary hospitals (7204 normal and 8605 abnormal with nodule/mass, interstitial opacity, pleural effusion, or pneumothorax). Except for the test set (100 normal and 100 abnormal (nodule/mass, 70; interstitial opacity, 10; pleural effusion, 10; pneumothorax, 10)), radiographs were used to develop a DLD system for detecting multiclass lesions. The diagnostic performance of the developed model and that of nine observers with varying experiences were evaluated and compared using area under the receiver operating characteristic curve (AUROC), on a per-image basis, and jackknife alternative free-response receiver operating characteristic figure of merit (FOM) on a per-lesion basis. The false-positive fraction was also calculated.

Results

Compared with the group-averaged observations, the DLD system demonstrated significantly higher performances on image-wise normal/abnormal classification and lesion-wise detection with pattern classification (AUROC, 0.985 vs. 0.958; p = 0.001; FOM, 0.962 vs. 0.886; p < 0.001). In lesion-wise detection, the DLD system outperformed all nine observers. In the subgroup analysis, the DLD system exhibited consistently better performance for both nodule/mass (FOM, 0.913 vs. 0.847; p < 0.001) and the other three abnormal classes (FOM, 0.995 vs. 0.843; p < 0.001). The false-positive fraction of all abnormalities was 0.11 for the DLD system and 0.19 for the observers.

Conclusions

The DLD system showed the potential for detection of lesions and pattern classification on chest radiographs, performing normal/abnormal classifications and achieving high diagnostic performance.

Key Points

The DLD system was feasible for detection with pattern classification of multiclass lesions on chest radiograph.
The DLD system had high performance of image-wise classification as normal or abnormal chest radiographs (AUROC, 0.985) and showed especially high specificity (99.0%).
In lesion-wise detection of multiclass lesions, the DLD system outperformed all 9 observers (FOM, 0.962 vs. 0.886; p < 0.001).
Appendix
Available only for authorised users
Literature
1.
go back to reference de Hoop B, Schaefer-Prokop C, Gietema HA et al (2010) Screening for lung cancer with digital chest radiography: sensitivity and number of secondary work-up CT examinations. Radiology 255:629–637CrossRef de Hoop B, Schaefer-Prokop C, Gietema HA et al (2010) Screening for lung cancer with digital chest radiography: sensitivity and number of secondary work-up CT examinations. Radiology 255:629–637CrossRef
2.
go back to reference Kundel HL (1981) Predictive value and threshold detectability of lung tumors. Radiology 139:25–29CrossRef Kundel HL (1981) Predictive value and threshold detectability of lung tumors. Radiology 139:25–29CrossRef
3.
go back to reference Quekel LG, Kessels AG, Goei R, van Engelshoven JMA (2001) Detection of lung cancer on the chest radiograph: a study on observer performance. Eur J Radiol 39:111–116CrossRef Quekel LG, Kessels AG, Goei R, van Engelshoven JMA (2001) Detection of lung cancer on the chest radiograph: a study on observer performance. Eur J Radiol 39:111–116CrossRef
4.
go back to reference Toyoda Y, Nakayama T, Kusunoki Y, Iso H, Suzuki T (2008) Sensitivity and specificity of lung cancer screening using chest low-dose computed tomography. Br J Cancer 98:1602–1607CrossRef Toyoda Y, Nakayama T, Kusunoki Y, Iso H, Suzuki T (2008) Sensitivity and specificity of lung cancer screening using chest low-dose computed tomography. Br J Cancer 98:1602–1607CrossRef
5.
go back to reference Li F, Arimura H, Suzuki K et al (2005) Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237:684–690CrossRef Li F, Arimura H, Suzuki K et al (2005) Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237:684–690CrossRef
6.
go back to reference Gavelli G, Giampalma E (2000) Sensitivity and specificity of chest X-ray screening for lung cancer: review article. Cancer 89:2453–2456CrossRef Gavelli G, Giampalma E (2000) Sensitivity and specificity of chest X-ray screening for lung cancer: review article. Cancer 89:2453–2456CrossRef
7.
go back to reference Bley TA, Baumann T, Saueressig U et al (2008) Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs. Invest Radiol 43:343–348CrossRef Bley TA, Baumann T, Saueressig U et al (2008) Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs. Invest Radiol 43:343–348CrossRef
8.
go back to reference Kasai S, Li F, Shiraishi J, Doi K (2008) Usefulness of computer-aided diagnosis schemes for vertebral fractures and lung nodules on chest radiographs. AJR Am J Roentgenol 191:260–265CrossRef Kasai S, Li F, Shiraishi J, Doi K (2008) Usefulness of computer-aided diagnosis schemes for vertebral fractures and lung nodules on chest radiographs. AJR Am J Roentgenol 191:260–265CrossRef
9.
go back to reference Li F, Hara T, Shiraishi J, Engelmann R, MacMahon H, Doi K (2011) Improved detection of subtle lung nodules by use of chest radiographs with bone suppression imaging: receiver operating characteristic analysis with and without localization. AJR Am J Roentgenol 196:W535–W541CrossRef Li F, Hara T, Shiraishi J, Engelmann R, MacMahon H, Doi K (2011) Improved detection of subtle lung nodules by use of chest radiographs with bone suppression imaging: receiver operating characteristic analysis with and without localization. AJR Am J Roentgenol 196:W535–W541CrossRef
10.
go back to reference Nam JG, Park S, Hwang EJ et al (2019) Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 290:218–228CrossRef Nam JG, Park S, Hwang EJ et al (2019) Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 290:218–228CrossRef
11.
go back to reference Cicero M, Bilbily A, Colak E et al (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52:281–287CrossRef Cicero M, Bilbily A, Colak E et al (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52:281–287CrossRef
12.
go back to reference Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP (2019) Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology 290:537–544CrossRef Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP (2019) Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology 290:537–544CrossRef
14.
go back to reference Hwang EJ, Park S, Jin KN et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2:e191095CrossRef Hwang EJ, Park S, Jin KN et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2:e191095CrossRef
16.
go back to reference Chakraborty DP (2006) Analysis of location specific observer performance data: validated extensions of the jackknife free-response (JAFROC) method. Acad Radiol 13:1187–1193CrossRef Chakraborty DP (2006) Analysis of location specific observer performance data: validated extensions of the jackknife free-response (JAFROC) method. Acad Radiol 13:1187–1193CrossRef
17.
go back to reference Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54:343–349CrossRef Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54:343–349CrossRef
18.
go back to reference Schalekamp S, van Ginneken B, Koedam E et al (2014) Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology 272:252–261CrossRef Schalekamp S, van Ginneken B, Koedam E et al (2014) Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology 272:252–261CrossRef
19.
go back to reference Novak RD, Novak NJ, Gilkeson R, Mansoori B, Aandal GE (2013) A comparison of computer-aided detection (CAD) effectiveness in pulmonary nodule identification using different methods of bone suppression in chest radiographs. J Digit Imaging 26:651–656CrossRef Novak RD, Novak NJ, Gilkeson R, Mansoori B, Aandal GE (2013) A comparison of computer-aided detection (CAD) effectiveness in pulmonary nodule identification using different methods of bone suppression in chest radiographs. J Digit Imaging 26:651–656CrossRef
20.
go back to reference Dellios N, Teichgraeber U, Chelaru R, Malich A, Papageorgiou IE (2017) Computer-aided detection fidelity of pulmonary nodules in chest radiograph. J Clin Imaging Sci 7:8–8CrossRef Dellios N, Teichgraeber U, Chelaru R, Malich A, Papageorgiou IE (2017) Computer-aided detection fidelity of pulmonary nodules in chest radiograph. J Clin Imaging Sci 7:8–8CrossRef
21.
go back to reference Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop CM (2014) Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med 35:3–16CrossRef Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop CM (2014) Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med 35:3–16CrossRef
22.
go back to reference Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286:800–809CrossRef Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286:800–809CrossRef
Metadata
Title
Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings
Authors
Sohee Park
Sang Min Lee
Kyung Hee Lee
Kyu-Hwan Jung
Woong Bae
Jooae Choe
Joon Beom Seo
Publication date
01-03-2020
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 3/2020
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06532-x

Other articles of this Issue 3/2020

European Radiology 3/2020 Go to the issue