Skip to main content
Top
Published in: Gut Pathogens 1/2022

01-12-2022 | Pleural Effusion | Research

Establishment of a gnotobiotic pig model of Clostridioides difficile infection and disease

Authors: Charlotte Nyblade, Viviana Parreno, Peng Zhou, Casey Hensley, Vanessa Oakes, Hassan M. Mahsoub, Kelsey Kiley, Maggie Frazier, Annie Frazier, Yongrong Zhang, Hanping Feng, Lijuan Yuan

Published in: Gut Pathogens | Issue 1/2022

Login to get access

Abstract

Clostridioides difficile (C. difficile) is a gram-positive, spore-forming, anaerobic bacterium known to be the most common cause of hospital-acquired and antibiotic-associated diarrhea. C. difficile infection rates are on the rise worldwide and treatment options are limited, indicating a clear need for novel therapeutics. Gnotobiotic piglets are an excellent model to reproduce the acute pseudomembranous colitis (PMC) caused by C. difficile due to their physiological similarities to humans and high susceptibility to infection. Here, we established a gnotobiotic pig model of C. difficile infection and disease using a hypervirulent strain. C. difficile-infected pigs displayed classic signs of C. difficile infection, including severe diarrhea and weight loss. Inoculated pigs had severe gross and microscopic intestinal lesions. C. difficile infection caused an increase in pro-inflammatory cytokines in samples of serum, large intestinal contents, and pleural effusion. C. difficile spores and toxins were detected in the feces of inoculated animals as tested by anaerobic culture and cytotoxicity assays. Successful establishment of this model is key for future work as therapeutics can be evaluated in an environment that accurately mimics what happens in humans. The model is especially suitable for evaluating potential prophylactics and therapeutics, including vaccines and passive immune strategies.
Literature
1.
go back to reference Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, et al. Clostridium difficile infection: review. Eur J Clin Microbiol Infect. 2019;38(7):1211–21.CrossRef Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, et al. Clostridium difficile infection: review. Eur J Clin Microbiol Infect. 2019;38(7):1211–21.CrossRef
2.
go back to reference Steele J, Feng H, Parry N, Tzipori S. Piglet models of acute or chronic Clostridium difficile illness. J Infect Dis. 2010;201(3):428–34.CrossRefPubMed Steele J, Feng H, Parry N, Tzipori S. Piglet models of acute or chronic Clostridium difficile illness. J Infect Dis. 2010;201(3):428–34.CrossRefPubMed
3.
go back to reference Yu H, Chen K, Sun Y, Carter M, Garey KW, Savidge TC, et al. Cytokines are markers of the Clostridium difficile-induced inflammatory response and predict disease severity. Clin Vaccine Immunol. 2017;24(8):e00037-e117.CrossRefPubMedPubMedCentral Yu H, Chen K, Sun Y, Carter M, Garey KW, Savidge TC, et al. Cytokines are markers of the Clostridium difficile-induced inflammatory response and predict disease severity. Clin Vaccine Immunol. 2017;24(8):e00037-e117.CrossRefPubMedPubMedCentral
5.
go back to reference Yu H, Chen K, Wu J, Yang Z, Shi L, Barlow LL, et al. Identification of toxemia in patients with Clostridium difficile infection. PLoS ONE. 2015;10(4): e0124235.CrossRefPubMedPubMedCentral Yu H, Chen K, Wu J, Yang Z, Shi L, Barlow LL, et al. Identification of toxemia in patients with Clostridium difficile infection. PLoS ONE. 2015;10(4): e0124235.CrossRefPubMedPubMedCentral
6.
go back to reference Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, et al. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. J Infect Dis. 2012;205(3):384–91.CrossRefPubMed Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, et al. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. J Infect Dis. 2012;205(3):384–91.CrossRefPubMed
7.
go back to reference Zhang Y, Yang Z, Gao S, Hamza T, Yfantis HG, Lipsky M, et al. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model. Anaerobe. 2017;1(48):249–56.CrossRef Zhang Y, Yang Z, Gao S, Hamza T, Yfantis HG, Lipsky M, et al. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model. Anaerobe. 2017;1(48):249–56.CrossRef
8.
go back to reference Carter GP, Chakravorty A, Nguyen TAP, Mileto S, Schreiber F, Li L, et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio. 2015;6(3):e00551.CrossRefPubMedPubMedCentral Carter GP, Chakravorty A, Nguyen TAP, Mileto S, Schreiber F, Li L, et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio. 2015;6(3):e00551.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Brauer M, Herrmann J, Zühlke D, Müller R, Riedel K, Sievers S. Myxopyronin B inhibits growth of a fidaxomicin-resistant Clostridioides difficile isolate and interferes with toxin synthesis. Gut Pathog. 2022;14(1):4.CrossRefPubMedPubMedCentral Brauer M, Herrmann J, Zühlke D, Müller R, Riedel K, Sievers S. Myxopyronin B inhibits growth of a fidaxomicin-resistant Clostridioides difficile isolate and interferes with toxin synthesis. Gut Pathog. 2022;14(1):4.CrossRefPubMedPubMedCentral
11.
go back to reference Hutton ML, Mackin KE, Chakravorty A, Lyras D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett. 2014;352(2):140–9.CrossRefPubMed Hutton ML, Mackin KE, Chakravorty A, Lyras D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett. 2014;352(2):140–9.CrossRefPubMed
12.
go back to reference Saif LJ, Ward LA, Yuan L, Rosen BI, To TL. The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. Arch Virol Suppl. 1996;12:153–61.CrossRefPubMed Saif LJ, Ward LA, Yuan L, Rosen BI, To TL. The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. Arch Virol Suppl. 1996;12:153–61.CrossRefPubMed
13.
go back to reference Yuan L, Jobst PM, Weiss M. Chapter 5—Gnotobiotic pigs: from establishing facility to modeling human infectious diseases. In: Schoeb TR, Eaton KA, editors. Gnotobiotics. London: Academic Press; 2017. p. 349–68.CrossRef Yuan L, Jobst PM, Weiss M. Chapter 5—Gnotobiotic pigs: from establishing facility to modeling human infectious diseases. In: Schoeb TR, Eaton KA, editors. Gnotobiotics. London: Academic Press; 2017. p. 349–68.CrossRef
14.
15.
go back to reference Lim SC, Knight DR, Riley TV. Clostridium difficile and one health. Clin Microbiol Infect. 2020;26(7):857–63.CrossRefPubMed Lim SC, Knight DR, Riley TV. Clostridium difficile and one health. Clin Microbiol Infect. 2020;26(7):857–63.CrossRefPubMed
16.
go back to reference Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest. 2005;17(6):528–36.CrossRefPubMed Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest. 2005;17(6):528–36.CrossRefPubMed
18.
go back to reference Yang Z, Schmidt D, Liu W, Li S, Shi L, Sheng J, et al. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J Infect Dis. 2014;210(6):964–72.CrossRefPubMedPubMedCentral Yang Z, Schmidt D, Liu W, Li S, Shi L, Sheng J, et al. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J Infect Dis. 2014;210(6):964–72.CrossRefPubMedPubMedCentral
19.
go back to reference Chen K, Zhu Y, Zhang Y, Hamza T, Yu H, Fleur AS, et al. A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci Transl Med. 2020;12(567): eaax4905.CrossRefPubMedPubMedCentral Chen K, Zhu Y, Zhang Y, Hamza T, Yu H, Fleur AS, et al. A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci Transl Med. 2020;12(567): eaax4905.CrossRefPubMedPubMedCentral
20.
go back to reference Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23(3):529–49.CrossRefPubMedPubMedCentral Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23(3):529–49.CrossRefPubMedPubMedCentral
21.
go back to reference Giancola SE, Williams RJ, Gentry CA. Prevalence of the Clostridium difficile BI/NAP1/027 strain across the United States veterans health administration. Clin Microbiol Infect. 2018;24(8):877–81.CrossRefPubMed Giancola SE, Williams RJ, Gentry CA. Prevalence of the Clostridium difficile BI/NAP1/027 strain across the United States veterans health administration. Clin Microbiol Infect. 2018;24(8):877–81.CrossRefPubMed
22.
go back to reference Valiente E, Cairns MD, Wren BW. The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect. 2014;20(5):396–404.CrossRefPubMed Valiente E, Cairns MD, Wren BW. The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect. 2014;20(5):396–404.CrossRefPubMed
23.
go back to reference Tian J-H, Glenn G, Flyer D, Zhou B, Liu Y, Sullivan E, et al. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models. Vaccine. 2017;35(33):4079–87.CrossRefPubMed Tian J-H, Glenn G, Flyer D, Zhou B, Liu Y, Sullivan E, et al. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models. Vaccine. 2017;35(33):4079–87.CrossRefPubMed
24.
go back to reference Kelly ML, Ng YK, Cartman ST, Collery MM, Cockayne A, Minton NP. Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection. Anaerobe. 2016;1(39):51–3.CrossRef Kelly ML, Ng YK, Cartman ST, Collery MM, Cockayne A, Minton NP. Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection. Anaerobe. 2016;1(39):51–3.CrossRef
25.
go back to reference Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology. 2008;135(6):1984–92.CrossRefPubMed Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology. 2008;135(6):1984–92.CrossRefPubMed
26.
go back to reference Cooperstock M, Riegle L, Woodruff CW, Onderdonk A. Influence of age, sex, and diet on asymptomatic colonization of infants with Clostridium difficile. J Clin Microbiol. 1983;17(5):830–3.CrossRefPubMedPubMedCentral Cooperstock M, Riegle L, Woodruff CW, Onderdonk A. Influence of age, sex, and diet on asymptomatic colonization of infants with Clostridium difficile. J Clin Microbiol. 1983;17(5):830–3.CrossRefPubMedPubMedCentral
27.
go back to reference Steiner TS, Flores CA, Pizarro TT, Guerrant RL. Fecal lactoferrin, interleukin-1beta, and interleukin-8 are elevated in patients with severe Clostridium difficile colitis. Clin Diagn Lab Immunol. 1997;4(6):719–22.CrossRefPubMedPubMedCentral Steiner TS, Flores CA, Pizarro TT, Guerrant RL. Fecal lactoferrin, interleukin-1beta, and interleukin-8 are elevated in patients with severe Clostridium difficile colitis. Clin Diagn Lab Immunol. 1997;4(6):719–22.CrossRefPubMedPubMedCentral
29.
go back to reference Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol. 2021;18(1):67–80.CrossRefPubMed Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol. 2021;18(1):67–80.CrossRefPubMed
30.
go back to reference Pang X, Hua X, Yang Q, Ding D, Che C, Cui L, et al. Inter-species transplantation of gut microbiota from human to pigs. ISME J. 2007;1(2):156–62.CrossRefPubMed Pang X, Hua X, Yang Q, Ding D, Che C, Cui L, et al. Inter-species transplantation of gut microbiota from human to pigs. ISME J. 2007;1(2):156–62.CrossRefPubMed
31.
go back to reference Schmidt DJ, Beamer G, Tremblay JM, Steele JA, Kim HB, Wang Y, et al. A tetraspecific VHH-based neutralizing antibody modifies disease outcome in three animal models of Clostridium difficile infection. Clin Vaccine Immunol CVI. 2016;23(9):774–84.CrossRefPubMed Schmidt DJ, Beamer G, Tremblay JM, Steele JA, Kim HB, Wang Y, et al. A tetraspecific VHH-based neutralizing antibody modifies disease outcome in three animal models of Clostridium difficile infection. Clin Vaccine Immunol CVI. 2016;23(9):774–84.CrossRefPubMed
Metadata
Title
Establishment of a gnotobiotic pig model of Clostridioides difficile infection and disease
Authors
Charlotte Nyblade
Viviana Parreno
Peng Zhou
Casey Hensley
Vanessa Oakes
Hassan M. Mahsoub
Kelsey Kiley
Maggie Frazier
Annie Frazier
Yongrong Zhang
Hanping Feng
Lijuan Yuan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2022
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-022-00496-y

Other articles of this Issue 1/2022

Gut Pathogens 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.