Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Plasmodium Falciparum | Research

Preclinical evaluation of antimalarial activity of CPF-1 formulation as an alternative choice for the treatment of malaria

Authors: Prapaporn Chaniad, Tachpon Techarang, Arisara Phuwajaroanpong, Walaiporn Plirat, Prasit Na-Ek, Atthaphon Konyanee, Parnpen Viriyavejakul, Abdi Wira Septama, Chuchard Punsawad

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities.

Methods

Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation’s aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter’s 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis.

Results

Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%).

Conclusion

The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.
Literature
6.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2020. WHO. World malaria report. Geneva: World Health Organization; 2020.
9.
go back to reference Department for Development of Thai Traditional and Alternative Medicine.List of herbal medicine products A.D 2011.ed n, editor. Bangkok: The War Veterans Organization of Thailand Under Royal Patronage of His Majesty The King; 2011. Department for Development of Thai Traditional and Alternative Medicine.List of herbal medicine products A.D 2011.ed n, editor. Bangkok: The War Veterans Organization of Thailand Under Royal Patronage of His Majesty The King; 2011.
11.
go back to reference Wutthithammawet W. Textbook of rattanakosin pharmacy. Bangkok: Wutthithammawet Cooporation; 2002. Wutthithammawet W. Textbook of rattanakosin pharmacy. Bangkok: Wutthithammawet Cooporation; 2002.
12.
go back to reference Sukkasem K, Panthong S, Itharat A. Antimicrobial activities of Thai traditional remedy “Kheaw- Hom” and its plant ingredients for skin infection treatment in chickenpox. J Med Assoc Thai 2016; 99:116.PubMed Sukkasem K, Panthong S, Itharat A. Antimicrobial activities of Thai traditional remedy “Kheaw- Hom” and its plant ingredients for skin infection treatment in chickenpox. J Med Assoc Thai 2016; 99:116.PubMed
13.
go back to reference Ouncharoen K, Itharat A, Chaiyawatthanananthn P. In vitro free radical scavenging and cell- based antioxidant activities of Kheaw-Hom remedy extracts and its plant ingredients. J Med Assoc Thai. 2017;100:241. Ouncharoen K, Itharat A, Chaiyawatthanananthn P. In vitro free radical scavenging and cell- based antioxidant activities of Kheaw-Hom remedy extracts and its plant ingredients. J Med Assoc Thai. 2017;100:241.
14.
go back to reference Sukkasem K. Biological activities of Thai traditional remedy called Kheaw-Hom and its plant ingredients: Thammasat University; 2015. Sukkasem K. Biological activities of Thai traditional remedy called Kheaw-Hom and its plant ingredients: Thammasat University; 2015.
15.
go back to reference Chaniad P, Techarang T, Phuwajaroanpong A, Horata N, Septama AW, Punsawad C. Exploring potential antimalarial candidate from medicinal plants of Kheaw Hom remedy. Trop Med Infect Dis. 2022;7(11):368.CrossRefPubMedPubMedCentral Chaniad P, Techarang T, Phuwajaroanpong A, Horata N, Septama AW, Punsawad C. Exploring potential antimalarial candidate from medicinal plants of Kheaw Hom remedy. Trop Med Infect Dis. 2022;7(11):368.CrossRefPubMedPubMedCentral
21.
go back to reference Mazumder R, Dastidar SG, Basu SP, Mazumder A. Effect of Mesua ferrea Linn. Flower extract on Salmonella. Indian J Exp Biol. 2005;43(6):566–568.PubMed Mazumder R, Dastidar SG, Basu SP, Mazumder A. Effect of Mesua ferrea Linn. Flower extract on Salmonella. Indian J Exp Biol. 2005;43(6):566–568.PubMed
23.
go back to reference Wantana R, Subhadhirasakul S, Pisit B. Antinociceptive and antipyretic activities of extracts and fractions from Dracaena loureiri in experimental animals. Songklanakarin J Sci Technol. 2003;25:468–476. Wantana R, Subhadhirasakul S, Pisit B. Antinociceptive and antipyretic activities of extracts and fractions from Dracaena loureiri in experimental animals. Songklanakarin J Sci Technol. 2003;25:468–476.
26.
go back to reference Phuwajaroanpong A, Chaniad P, Horata N, Muangchanburee S, Kaewdana K, Punsawad C. In vitro and in vivo antimalarial activities and toxicological assessment of Pogostemon cablin(Blanco)Benth. J Evid Based Integr Med. 2020;25:2515690x20978387.https://doi.org/10.1177/2515690x20978387. Phuwajaroanpong A, Chaniad P, Horata N, Muangchanburee S, Kaewdana K, Punsawad C. In vitro and in vivo antimalarial activities and toxicological assessment of Pogostemon cablin(Blanco)Benth. J Evid Based Integr Med. 2020;25:2515690x20978387.https://​doi.​org/​10.​1177/​2515690x20978387​.
33.
go back to reference Peters W. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol. 1975;69:155–171.CrossRefPubMed Peters W. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol. 1975;69:155–171.CrossRefPubMed
46.
go back to reference Umar MI, Asmawi MZ, Sadikun A, Atangwho IJ, Yam MF, Altaf R, et al. Bioactivity-guided isolation of Ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules. 2012;17(7):8720–8734.CrossRefPubMedPubMedCentral Umar MI, Asmawi MZ, Sadikun A, Atangwho IJ, Yam MF, Altaf R, et al. Bioactivity-guided isolation of Ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules. 2012;17(7):8720–8734.CrossRefPubMedPubMedCentral
50.
go back to reference Silva AT, Bento CM, Pena AC, Figueiredo LM, Prudêncio C, Aguiar L, et al. Cinnamic acid conjugates in the rescuing and repurposing of classical antimalarial drugs. Molecules. 2020;25(1):66.CrossRef Silva AT, Bento CM, Pena AC, Figueiredo LM, Prudêncio C, Aguiar L, et al. Cinnamic acid conjugates in the rescuing and repurposing of classical antimalarial drugs. Molecules. 2020;25(1):66.CrossRef
51.
go back to reference Bariweni M, Oboma Y, Ozolua R. Toxicological studies on the aqueous leaf extract of Pavetta crassipes (K. Schum) in rodents. J Pharm Pharmacogn Res. 2018;6:1–16. Bariweni M, Oboma Y, Ozolua R. Toxicological studies on the aqueous leaf extract of Pavetta crassipes (K. Schum) in rodents. J Pharm Pharmacogn Res. 2018;6:1–16.
54.
go back to reference Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira DJPm. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007;53(05):461–467.CrossRef Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira DJPm. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007;53(05):461–467.CrossRef
Metadata
Title
Preclinical evaluation of antimalarial activity of CPF-1 formulation as an alternative choice for the treatment of malaria
Authors
Prapaporn Chaniad
Tachpon Techarang
Arisara Phuwajaroanpong
Walaiporn Plirat
Prasit Na-Ek
Atthaphon Konyanee
Parnpen Viriyavejakul
Abdi Wira Septama
Chuchard Punsawad
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-03973-2

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue