Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Study of sedative activity of different extracts of Kaempferia galanga in Swiss albino mice

Authors: Mohammad Shawkat Ali, Pritesh Ranjan Dash, Mahmuda Nasrin

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Kaempferia galanga is an important medicinal plant and has been traditionally used to help restlessness, stress, anxiety, depression etc. in tropics and subtropics of Asia including Bangladesh, India, China, Japan and Indochina. Literature survey revealed that there are very less reports on neuropharmacological activity of this plant. Therefore, the present study investigated the sedative activity of different extracts of rhizome and leaf of Kaempferia galanga.

Methods

The sedative activity was evaluated by using thiopental sodium induced sleeping time, hole cross and open field tests in Swiss albino mice at the doses of 100 and 200 mg/kg body weight per oral (p.o). The acetone extract of rhizome (ACR), as well as petroleum ether fraction (PEF), chloroform fraction (CHF), methanol fraction (MEF) and acetone extract of leaf (ACL) were examined for sedative activity.

Results

In the sedative activity study, all the extracts exhibited significant (p < 0.05 and p < 0.001) reduction of onset and duration of thiopental sodium induced sleeping time, reduction of locomotor and exploratory activities in the hole cross and open field tests. In thiopental sodium induced sleeping time test, the chloroform extract of rhizome (200 mg/kg) showed maximum 358.55 % effect in duration of loss of righting reflex, whereas the standard drug Diazepam (2 mg/kg) produced 231.42 % effect. In hole cross and open field tests, maximum 95.09 % and 95.58 % suppression of locomotor activity were observed with the acetonic leaf extract (200 mg/kg) whereas suppression of locomotor activity of the standard drug Diazepam were 71.70 % and 70.58 % respectively.

Conclusion

The present study indicates that the acetone extracts of rhizome and leaf of Kaempferia galanga including fractions possess central nervous system (CNS) depressant properties which supports its use in traditional medicine. So, the plant may be further investigated to find out for its pharmacological active natural products.
Literature
1.
go back to reference Dash PR, Nasrin M, Raihan SZ, Ali MS. Study of antidiarrhoeal activity of two medicinal plants of Bangladesh in castor-oil induced diarrhoea. Int J Pharm Sci Res. 2014;5(9):3864–8. Dash PR, Nasrin M, Raihan SZ, Ali MS. Study of antidiarrhoeal activity of two medicinal plants of Bangladesh in castor-oil induced diarrhoea. Int J Pharm Sci Res. 2014;5(9):3864–8.
2.
go back to reference Dash PR, Raihan SZ, Ali MS. Ethnopharmacological investigation of the spice Kaempferia galanga. 1st ed. Germany: Lambert Academic Publishing; 2013. Dash PR, Raihan SZ, Ali MS. Ethnopharmacological investigation of the spice Kaempferia galanga. 1st ed. Germany: Lambert Academic Publishing; 2013.
3.
go back to reference Huang L, Yagura T, Chen S. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. J Ethnopharmacol. 2008;120:123–5.CrossRefPubMed Huang L, Yagura T, Chen S. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. J Ethnopharmacol. 2008;120:123–5.CrossRefPubMed
4.
go back to reference Sulaiman MR, Zakaria ZA, Daud IA, Ng FN, Ng YC, Hidayat MT. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J Nat Med. 2008;62:221–7.CrossRefPubMed Sulaiman MR, Zakaria ZA, Daud IA, Ng FN, Ng YC, Hidayat MT. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J Nat Med. 2008;62:221–7.CrossRefPubMed
5.
go back to reference Ridtitid W, Sae-Wong C, Reanmongkol W, Wongnawa M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J Ethnopharmacol. 2008;118:225–30.CrossRefPubMed Ridtitid W, Sae-Wong C, Reanmongkol W, Wongnawa M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J Ethnopharmacol. 2008;118:225–30.CrossRefPubMed
6.
go back to reference In-Ho C, Ju-Yong P, Sang-Chul S, Il-Kwon P. Nematicidal activity of medicinal plant extracts and two cinnamates isolated from Kaempferia galanga L. (Proh Hom) against the pine wood nematode, Bursaphelenchus xylophilus. Nematology. 2006;8:359–65.CrossRef In-Ho C, Ju-Yong P, Sang-Chul S, Il-Kwon P. Nematicidal activity of medicinal plant extracts and two cinnamates isolated from Kaempferia galanga L. (Proh Hom) against the pine wood nematode, Bursaphelenchus xylophilus. Nematology. 2006;8:359–65.CrossRef
7.
go back to reference Choochote W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U, et al. Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Public Health. 1999;30:470–6.PubMed Choochote W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U, et al. Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Public Health. 1999;30:470–6.PubMed
8.
go back to reference Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B, et al. Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia. 2007;78:359–64.CrossRefPubMed Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B, et al. Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia. 2007;78:359–64.CrossRefPubMed
9.
go back to reference Yang YC, Park IK, Kim EH, Lee HS, Ahn YJ. Larvicidal Activity of Medicinal Plant Extracts against Aedes aegypti, Ochlerotatus togoi, and Culex pipiens pallens (Diptera: Culicidae). J Asia Pac Entomol. 2004;7:227–32.CrossRef Yang YC, Park IK, Kim EH, Lee HS, Ahn YJ. Larvicidal Activity of Medicinal Plant Extracts against Aedes aegypti, Ochlerotatus togoi, and Culex pipiens pallens (Diptera: Culicidae). J Asia Pac Entomol. 2004;7:227–32.CrossRef
10.
go back to reference Zakaria M, Mustafa AM: Traditional Malay Medicinal Plants. Fajar Bakti, Kuala Lumpur: Penerbit Fajar Bakti Sdn. Bhd. Malaysia; 1994, p. 129 Zakaria M, Mustafa AM: Traditional Malay Medicinal Plants. Fajar Bakti, Kuala Lumpur: Penerbit Fajar Bakti Sdn. Bhd. Malaysia; 1994, p. 129
11.
go back to reference Koh HL: Guide to Medicinal Plants: An Illustrated Scientific and Medicinal Approach. SGP. World Scientific; 2009. Koh HL: Guide to Medicinal Plants: An Illustrated Scientific and Medicinal Approach. SGP. World Scientific; 2009.
12.
go back to reference Kosuge T, Yokota M, Sugiyama K, Saito M, Iwata Y, Nakura M, et al. Studies on anticancer principles in Chinese medicines. II. Cytotoxic principles in Biota orientalis (L.) Endl. And Kaempferia galanga L. Chem Pharm Bull. 1985;33:5565–7.CrossRefPubMed Kosuge T, Yokota M, Sugiyama K, Saito M, Iwata Y, Nakura M, et al. Studies on anticancer principles in Chinese medicines. II. Cytotoxic principles in Biota orientalis (L.) Endl. And Kaempferia galanga L. Chem Pharm Bull. 1985;33:5565–7.CrossRefPubMed
13.
14.
go back to reference Kanjanapothi D, Panthong A, Lertprasertsuke N, Taesotikul T, Rujjanawate C, Kaewpinit D, et al. Toxicity of crude rhizome extract of Kaempferia alanga L. (Proh Hom). J Ethnopharmacol. 2004;90:359–65.CrossRefPubMed Kanjanapothi D, Panthong A, Lertprasertsuke N, Taesotikul T, Rujjanawate C, Kaewpinit D, et al. Toxicity of crude rhizome extract of Kaempferia alanga L. (Proh Hom). J Ethnopharmacol. 2004;90:359–65.CrossRefPubMed
15.
go back to reference Techaprasan J, Klinbunga S, Ngamriabsakul C, Jenjittikul T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet Mol Res. 2010;9:1957–73.CrossRefPubMed Techaprasan J, Klinbunga S, Ngamriabsakul C, Jenjittikul T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet Mol Res. 2010;9:1957–73.CrossRefPubMed
16.
go back to reference Dash PR, Nasrin M, Ali MS. In Vivo Cytotoxic and In Vitro Antibacterial activities of Kaempferia galanga. Phyto Journal. 2014;3(1):172–7. Dash PR, Nasrin M, Ali MS. In Vivo Cytotoxic and In Vitro Antibacterial activities of Kaempferia galanga. Phyto Journal. 2014;3(1):172–7.
17.
go back to reference Chan EWC, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, et al. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008;109:477–83.CrossRef Chan EWC, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, et al. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008;109:477–83.CrossRef
18.
go back to reference Mekseepralard C, Kamkaen N, Wilkinson JM. Antimicrobial and antioxidant activities of traditional Thai herbal remedies for aphthous ulcers. Phytother Res. 2010;24:1514–9.CrossRefPubMed Mekseepralard C, Kamkaen N, Wilkinson JM. Antimicrobial and antioxidant activities of traditional Thai herbal remedies for aphthous ulcers. Phytother Res. 2010;24:1514–9.CrossRefPubMed
19.
go back to reference Othman R, Ibrahim H, Mohd MA, Mustafa MR. Awang K :Bioassay-guided isolation of a vasorelaxant active compound from Kaempferia galanga L. Phytomedicine. 2006;13:61–6.CrossRefPubMed Othman R, Ibrahim H, Mohd MA, Mustafa MR. Awang K :Bioassay-guided isolation of a vasorelaxant active compound from Kaempferia galanga L. Phytomedicine. 2006;13:61–6.CrossRefPubMed
20.
go back to reference Yu JG, Yu DL, Zhang S, Luo XZ, Sun L, Zheng CC, et al. Studies on the chemical constituents of Kaempferia marginata. Acta Pharm Sin. 2000;35:760–3. Yu JG, Yu DL, Zhang S, Luo XZ, Sun L, Zheng CC, et al. Studies on the chemical constituents of Kaempferia marginata. Acta Pharm Sin. 2000;35:760–3.
21.
go back to reference Nasrin M, Dash PR, Ali MS. In Vitro Antibacterial and In Vivo Cytotoxic activities of Grewia paniculata. Avicenna J Phytomed. 2015;5(2):98–104.PubMedPubMedCentral Nasrin M, Dash PR, Ali MS. In Vitro Antibacterial and In Vivo Cytotoxic activities of Grewia paniculata. Avicenna J Phytomed. 2015;5(2):98–104.PubMedPubMedCentral
22.
go back to reference Walker CI, Trevisan G, Rossato MF, Franciscato C, Pereira ME, Ferreira J, et al. Antinociceptive activity of Mirabilis jalapa in mice. J Ethnopharmacol. 2008;120:169–75.CrossRefPubMed Walker CI, Trevisan G, Rossato MF, Franciscato C, Pereira ME, Ferreira J, et al. Antinociceptive activity of Mirabilis jalapa in mice. J Ethnopharmacol. 2008;120:169–75.CrossRefPubMed
23.
go back to reference Turner RA. Anticonvulsant screening methods in pharmacology. New York and London: Academic Press; 1965. p. 64–9. Turner RA. Anticonvulsant screening methods in pharmacology. New York and London: Academic Press; 1965. p. 64–9.
24.
go back to reference Takagi K, Watanabe M, Saito H. Studies on the spontaneous movement of animals by the hole cross test: Effect of 2-dimethylaminoethan Its acylesters on the central nervous system. Jpn J Pharmacol. 1971;21:797.CrossRefPubMed Takagi K, Watanabe M, Saito H. Studies on the spontaneous movement of animals by the hole cross test: Effect of 2-dimethylaminoethan Its acylesters on the central nervous system. Jpn J Pharmacol. 1971;21:797.CrossRefPubMed
25.
go back to reference Gupta BD, Dandiya PC, Gupta ML. A psychopharmacological analysis of behaviour in rat. Jpn J Pharmacol. 1971;21:293.CrossRefPubMed Gupta BD, Dandiya PC, Gupta ML. A psychopharmacological analysis of behaviour in rat. Jpn J Pharmacol. 1971;21:293.CrossRefPubMed
26.
go back to reference Fujimori H. Potentiation of barbital hypnosis as an evaluation method for CNS depressant. Psychopharmacol. 1995;7:374–7.CrossRef Fujimori H. Potentiation of barbital hypnosis as an evaluation method for CNS depressant. Psychopharmacol. 1995;7:374–7.CrossRef
27.
go back to reference Mansur RM, Martz W, Carlini EA. Effects of acute and chronic administration of Cannabis satis and (−) 9-trans tetrahydro cannabinaol on the behaviour of rats in open field arena. Psychopharmacol. 1980;2:5–7. Mansur RM, Martz W, Carlini EA. Effects of acute and chronic administration of Cannabis satis and (−) 9-trans tetrahydro cannabinaol on the behaviour of rats in open field arena. Psychopharmacol. 1980;2:5–7.
28.
go back to reference Ozturk Y, Aydini S, Beis R, Baser KHC, Berberoglu H. Effect of Hypericum pericum L. and Hypericum calycinum L. extracts on the central nervous system in mice. Phytomed. 1996;3(2):139–46.CrossRef Ozturk Y, Aydini S, Beis R, Baser KHC, Berberoglu H. Effect of Hypericum pericum L. and Hypericum calycinum L. extracts on the central nervous system in mice. Phytomed. 1996;3(2):139–46.CrossRef
29.
go back to reference Dandiya PC, Cullumbine H, Sellers EA. Studies on Acorus calamus (IV): Investigations on mechanism of action in mice. J Pharmacol Exp Ther. 1959;126:334–7.PubMed Dandiya PC, Cullumbine H, Sellers EA. Studies on Acorus calamus (IV): Investigations on mechanism of action in mice. J Pharmacol Exp Ther. 1959;126:334–7.PubMed
Metadata
Title
Study of sedative activity of different extracts of Kaempferia galanga in Swiss albino mice
Authors
Mohammad Shawkat Ali
Pritesh Ranjan Dash
Mahmuda Nasrin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0670-z

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue