Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Plasmodium Falciparum | Research

Clustering of asymptomatic Plasmodium falciparum infection and the effectiveness of targeted malaria control measures

Authors: Jeffrey G. Shaffer, Mahamoudou B. Touré, Nafomon Sogoba, Seydou O. Doumbia, Jules F. Gomis, Mouhamadou Ndiaye, Daouda Ndiaye, Ayouba Diarra, Ismaela Abubakar, Abdullahi Ahmad, Muna Affara, Davis Nwakanma, Mary Lukowski, James C. Welty, Frances J. Mather, Joseph Keating, Donald J. Krogstad

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Because clustering of Plasmodium falciparum infection had been noted previously, the clustering of infection was examined at four field sites in West Africa: Dangassa and Dioro in Mali, Gambissara in The Gambia and Madina Fall in Senegal.

Methods

Clustering of infection was defined by the percent of persons with positive slides for asexual P. falciparum sleeping in a house which had been geopositioned. Data from each site were then tested for spatial, temporal and spatio-temporal clustering in relation to the prevalence of infection from smear surveys.

Results

These studies suggest that clustering of P. falciparum infection also affects the effectiveness of control interventions. For example, the clustering of infection in Madina Fall disappeared in 2014–2016 after vector control eliminated the only breeding site in 2013. In contrast, the temporal clustering of infection in Dioro (rainy season of 2014, dry season of 2015) was consistent with the loss of funding for Dioro in the second quarter of 2014 and disappeared when funds again became available in late 2015. The clustering of infection in rural (western) areas of Gambissara was consistent with known rural–urban differences in the prevalence of infection and with the thatched roofs, open eaves and mud walls of houses in rural Gambissara. In contrast, the most intense transmission was in Dangassa, where the only encouraging observation was a lower prevalence of infection in the dry season. Taken together, these results suggest: (a) the transmission of infection was stopped in Madina Fall by eliminating the only known breeding site, (b) the prevalence of infection was reduced in Dioro after financial support became available again for malaria control in the second half of 2015, (c) improvements in housing should improve malaria control by reducing the number of vectors in rural communities such as western Gambissara, and (d) beginning malaria control during the dry season may reduce transmission in hyperendemic areas such as Dangassa.

Conclusions

From a conceptual perspective, testing for spatial, temporal and spatio-temporal clustering based on epidemiologic data permits the generation of hypotheses for the clustering observed and the testing of candidate interventions to confirm or refute those hypotheses.
Appendix
Available only for authorised users
Literature
5.
go back to reference Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, et al. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health. 2004;9:757–66.CrossRef Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, et al. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health. 2004;9:757–66.CrossRef
6.
go back to reference Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.CrossRef Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.CrossRef
7.
go back to reference Coulibaly D, Rebaudet S, Travassos M, Tolo Y, Laurens M, Kone AK, et al. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali. Malar J. 2013;12:82.CrossRef Coulibaly D, Rebaudet S, Travassos M, Tolo Y, Laurens M, Kone AK, et al. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali. Malar J. 2013;12:82.CrossRef
8.
go back to reference Sissoko MS, van den Hoogen LL, Samake Y, Tapily A, Diarra AZ, Coulibaly M, et al. Spatial patterns of Plasmodium falciparum clinical incidence, asymptomatic parasite carriage and Anopheles density in two villages in Mali. Am J Trop Med Hyg. 2015;93:790–7.CrossRef Sissoko MS, van den Hoogen LL, Samake Y, Tapily A, Diarra AZ, Coulibaly M, et al. Spatial patterns of Plasmodium falciparum clinical incidence, asymptomatic parasite carriage and Anopheles density in two villages in Mali. Am J Trop Med Hyg. 2015;93:790–7.CrossRef
9.
go back to reference Gaudart J, Poudiougou B, Dicko A, Ranque S, Touré O, Sagara I, et al. Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village. BMC Public Health. 2006;6:286.CrossRef Gaudart J, Poudiougou B, Dicko A, Ranque S, Touré O, Sagara I, et al. Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village. BMC Public Health. 2006;6:286.CrossRef
10.
go back to reference Stresman GH, Mwesigwa J, Achan J, Giorgi E, Worwui A, Jawara M, et al. Do hot spots fuel malaria transmission: a village-scale spatio-temporal analysis of a 2-year cohort study in The Gambia. BMC Med. 2018;16:160.CrossRef Stresman GH, Mwesigwa J, Achan J, Giorgi E, Worwui A, Jawara M, et al. Do hot spots fuel malaria transmission: a village-scale spatio-temporal analysis of a 2-year cohort study in The Gambia. BMC Med. 2018;16:160.CrossRef
11.
go back to reference Rosas-Aguirre A, Ponce OJ, Carrasco-Escobar G, Speybroeck N, Contreras-Mancilla J, Gamboa D, et al. Plasmodium vivax malaria at households: spatial clustering and risk factors in a low endemicity urban area of the northwestern Peruvian coast. Malar J. 2015;14:176.CrossRef Rosas-Aguirre A, Ponce OJ, Carrasco-Escobar G, Speybroeck N, Contreras-Mancilla J, Gamboa D, et al. Plasmodium vivax malaria at households: spatial clustering and risk factors in a low endemicity urban area of the northwestern Peruvian coast. Malar J. 2015;14:176.CrossRef
12.
go back to reference Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis. 2010;201:1764–74.CrossRef Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis. 2010;201:1764–74.CrossRef
13.
go back to reference Rulisa S, Kateera F, Bizimana JP, Agaba S, Dukuzumuremyi J, Baas L, et al. Malaria prevalence, spatial clustering and risk factors in a low endemic area of Eastern Rwanda: a cross sectional study. PLoS ONE. 2013;8:e69443.CrossRef Rulisa S, Kateera F, Bizimana JP, Agaba S, Dukuzumuremyi J, Baas L, et al. Malaria prevalence, spatial clustering and risk factors in a low endemic area of Eastern Rwanda: a cross sectional study. PLoS ONE. 2013;8:e69443.CrossRef
14.
go back to reference Mosha JF, Sturrock HJW, Greenhouse B, Greenwood B, Sutherland CJ, Gadalla N, et al. Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J. 2013;12:221.CrossRef Mosha JF, Sturrock HJW, Greenhouse B, Greenwood B, Sutherland CJ, Gadalla N, et al. Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J. 2013;12:221.CrossRef
15.
go back to reference Greenwood BM. The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg. 1989;83(Suppl):25–9.CrossRef Greenwood BM. The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg. 1989;83(Suppl):25–9.CrossRef
16.
go back to reference Mlacha YP, Chaki PP, Malishee AD, Mwakalinga VM, Govella NJ, Limwagu AJ, et al. Fine scale mapping of malaria infection clusters by using routinely collected health facility data in urban Dar es Salaam, Tanzania. Geospat Health. 2017;12:494.CrossRef Mlacha YP, Chaki PP, Malishee AD, Mwakalinga VM, Govella NJ, Limwagu AJ, et al. Fine scale mapping of malaria infection clusters by using routinely collected health facility data in urban Dar es Salaam, Tanzania. Geospat Health. 2017;12:494.CrossRef
17.
go back to reference Landier J, Rebaudet S, Piarroux R, Gaudart J. Spatiotemporal analysis of malaria for new sustainable control strategies. BMC Med. 2018;16:226.CrossRef Landier J, Rebaudet S, Piarroux R, Gaudart J. Spatiotemporal analysis of malaria for new sustainable control strategies. BMC Med. 2018;16:226.CrossRef
20.
go back to reference Shaffer JG, Doumbia SO, Ndiaye D, Diarra A, Gomis JF, Nwakanma D, et al. Development of a data collection and management system in West Africa: challenges and sustainability. Infect Dis Poverty. 2018;7:125.CrossRef Shaffer JG, Doumbia SO, Ndiaye D, Diarra A, Gomis JF, Nwakanma D, et al. Development of a data collection and management system in West Africa: challenges and sustainability. Infect Dis Poverty. 2018;7:125.CrossRef
25.
go back to reference Anselin L. Local indicators of spatial association. Geogr Analysis. 1995;27:93–115.CrossRef Anselin L. Local indicators of spatial association. Geogr Analysis. 1995;27:93–115.CrossRef
26.
go back to reference Lindsay SW, Jawara M, Mwesigwa J, Achan J, Bayoh N, Bradley J, et al. Reduced mosquito survival in metal-roof houses may contribute to a decline in malaria transmission in sub-Saharan Africa. Sci Rep. 2019;9:7770.CrossRef Lindsay SW, Jawara M, Mwesigwa J, Achan J, Bayoh N, Bradley J, et al. Reduced mosquito survival in metal-roof houses may contribute to a decline in malaria transmission in sub-Saharan Africa. Sci Rep. 2019;9:7770.CrossRef
27.
go back to reference Jatta E, Jawara M, Bradley J, Jeffries D, Kandeh B, Knudsen JB, et al. How house design affects malaria mosquito density, temperature, and relative humidity: an experimental study in rural Gambia. Lancet Planet Health. 2018;2:e498–508.CrossRef Jatta E, Jawara M, Bradley J, Jeffries D, Kandeh B, Knudsen JB, et al. How house design affects malaria mosquito density, temperature, and relative humidity: an experimental study in rural Gambia. Lancet Planet Health. 2018;2:e498–508.CrossRef
28.
go back to reference Snyman K, Mwangwa F, Bigira V, Kapisi J, Clark TD, Osterbauer B, et al. Poor housing construction associated with increased malaria incidence in a cohort of young Ugandan children. Am J Trop Med Hyg. 2015;92:1207–13.CrossRef Snyman K, Mwangwa F, Bigira V, Kapisi J, Clark TD, Osterbauer B, et al. Poor housing construction associated with increased malaria incidence in a cohort of young Ugandan children. Am J Trop Med Hyg. 2015;92:1207–13.CrossRef
29.
go back to reference Sissoko MS, Sissoko K, Kamate B, Samake Y, Goita S, Dabo A, et al. Temporal dynamic of malaria in a suburban area along the Niger River. Malar J. 2017;16:420.CrossRef Sissoko MS, Sissoko K, Kamate B, Samake Y, Goita S, Dabo A, et al. Temporal dynamic of malaria in a suburban area along the Niger River. Malar J. 2017;16:420.CrossRef
30.
go back to reference Smith JL, Auala J, Tambo M, Haindongo E, Katokele S, Uusiku P, et al. Spatial clustering of patent and sub-patent malaria infections in northern Namibia: implications for surveillance and response strategies for elimination. PLoS One. 2017;12:e0180845.CrossRef Smith JL, Auala J, Tambo M, Haindongo E, Katokele S, Uusiku P, et al. Spatial clustering of patent and sub-patent malaria infections in northern Namibia: implications for surveillance and response strategies for elimination. PLoS One. 2017;12:e0180845.CrossRef
Metadata
Title
Clustering of asymptomatic Plasmodium falciparum infection and the effectiveness of targeted malaria control measures
Authors
Jeffrey G. Shaffer
Mahamoudou B. Touré
Nafomon Sogoba
Seydou O. Doumbia
Jules F. Gomis
Mouhamadou Ndiaye
Daouda Ndiaye
Ayouba Diarra
Ismaela Abubakar
Abdullahi Ahmad
Muna Affara
Davis Nwakanma
Mary Lukowski
James C. Welty
Frances J. Mather
Joseph Keating
Donald J. Krogstad
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3063-9

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.