Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 1/2020

01-03-2020 | Pituitary Adenoma

The pathogenic role of the GIP/GIPR axis in human endocrine tumors: emerging clinical mechanisms beyond diabetes

Authors: Daniela Regazzo, Mattia Barbot, Carla Scaroni, Nora Albiger, Gianluca Occhi

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 1/2020

Login to get access

Abstract

The glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone produced in the gastrointestinal tract in response to nutrients. GIP has a variety of effects on different systems, including the potentiation of insulin secretion from pancreatic β-cells after food intake (i.e. incretin effect), which is probably the most important. GIP effects are mediated by the GIP receptor (GIPR), a G protein-coupled receptor expressed in several tissues, including islet β-cells, adipocytes, bone cells, and brain. As well as its involvement in metabolic disorders (e.g. it contributes to the impaired postprandial insulin secretion in type 2 diabetes (T2DM), and to the pathogenesis of obesity and associated insulin resistance), an inappropriate GIP/GIPR axis activation of potential diagnostic and prognostic value has been reported in several endocrine tumors in recent years. The ectopic GIPR expression seen in patients with overt Cushing syndrome and primary bilateral macronodular adrenal hyperplasia or unilateral cortisol-producing adenoma has been associated with an inverse rhythm of cortisol secretion, with low fasting morning plasma levels that increase after eating. On the other hand, most acromegalic patients with an unusual GH response to oral glucose suppression have GIPR-positive somatotropinomas, and a milder phenotype, and are more responsive to medical treatment. Neuroendocrine tumors are characterized by a strong GIPR expression that may correlate positively or inversely with the proliferative index MIB-1, and that seems an attractive target for developing novel radioligands. The main purpose of this review is to summarize the role of the GIP/GIPR axis in endocrine neoplasia, in the experimental and the clinical settings.
Literature
9.
go back to reference Gremlich S, Porret A, Hani EH, Cherif D, Vionnet N, Froguel P, et al. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes [Internet]. American Diabetes Association; 1995 [cited 2019 Aug 7];44:1202–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7556958. Gremlich S, Porret A, Hani EH, Cherif D, Vionnet N, Froguel P, et al. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes [Internet]. American Diabetes Association; 1995 [cited 2019 Aug 7];44:1202–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​7556958.
17.
19.
go back to reference Widenmaier SB, Ao Z, Kim S-J, Warnock G, McIntosh CHS. Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. J Biol Chem United States. 2009;284:30372–82.CrossRef Widenmaier SB, Ao Z, Kim S-J, Warnock G, McIntosh CHS. Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. J Biol Chem United States. 2009;284:30372–82.CrossRef
20.
go back to reference Kim S-J, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CHS. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regu. J Biol Chem US. 2005;280:22297–307.CrossRef Kim S-J, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CHS. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regu. J Biol Chem US. 2005;280:22297–307.CrossRef
21.
go back to reference Trümper A, Trümper K, Hörsch D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in β(INS-1)-cells. J Endocrinol 2002; Trümper A, Trümper K, Hörsch D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in β(INS-1)-cells. J Endocrinol 2002;
22.
go back to reference Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D. Glucose-dependent insulinotropic polypeptide is a growth factor for β (INS-1) cells by pleiotropic signaling. Mol Endocrinol [Internet]. 2001 [cited 2019 Aug 7];15:1559–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11518806. Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D. Glucose-dependent insulinotropic polypeptide is a growth factor for β (INS-1) cells by pleiotropic signaling. Mol Endocrinol [Internet]. 2001 [cited 2019 Aug 7];15:1559–70. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11518806.
25.
go back to reference Zhong Q, Itokawa T, Sridhar S, Ding K-H, Xie D, Kang B, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab US. 2007;292:E543–8.CrossRef Zhong Q, Itokawa T, Sridhar S, Ding K-H, Xie D, Kang B, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab US. 2007;292:E543–8.CrossRef
32.
33.
go back to reference Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high-fat diet. J Biol Chem [Internet]. 2008 [cited 2019 Aug 1];283:18365–76. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M710466200 Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high-fat diet. J Biol Chem [Internet]. 2008 [cited 2019 Aug 1];283:18365–76. Available from: http://​www.​jbc.​org/​lookup/​doi/​10.​1074/​jbc.​M710466200
36.
38.
39.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009. p. e1–34. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009. p. e1–34.
40.
go back to reference Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet (London, England). England; 2015;386:913–27. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet (London, England). England; 2015;386:913–27.
42.
go back to reference Groussin L, Perlemoine K, Contesse V, Lefebvre H, Tabarin A, Thieblot P, et al. The ectopic expression of the gastric inhibitory polypeptide receptor is frequent in adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia, but rare in unilateral tumors. J Clin Endocrinol Metab. United States; 2002;87:1980–5. Groussin L, Perlemoine K, Contesse V, Lefebvre H, Tabarin A, Thieblot P, et al. The ectopic expression of the gastric inhibitory polypeptide receptor is frequent in adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia, but rare in unilateral tumors. J Clin Endocrinol Metab. United States; 2002;87:1980–5.
44.
go back to reference Lacroix A, Bolte E, Tremblay J, Dupre J, Poitras P, Fournier H, et al. Gastric inhibitory polypeptide-dependent cortisol hypersecretion--a new cause of Cushing’s syndrome. N Engl J Med US. 1992;327:974–80.CrossRef Lacroix A, Bolte E, Tremblay J, Dupre J, Poitras P, Fournier H, et al. Gastric inhibitory polypeptide-dependent cortisol hypersecretion--a new cause of Cushing’s syndrome. N Engl J Med US. 1992;327:974–80.CrossRef
45.
go back to reference Reznik Y, Allali-Zerah V, Chayvialle JA, Leroyer R, Leymarie P, Travert G, et al. Food-dependent Cushing’s syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med US. 1992;327:981–6.CrossRef Reznik Y, Allali-Zerah V, Chayvialle JA, Leroyer R, Leymarie P, Travert G, et al. Food-dependent Cushing’s syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med US. 1992;327:981–6.CrossRef
46.
go back to reference Lebrethon MC, Avallet O, Reznik Y, Archambeaud F, Combes J, Usdin TB, et al. Food-dependent Cushing’s syndrome: characterization and functional role of gastric inhibitory polypeptide receptor in the adrenals of three patients. J Clin Endocrinol Metab US. 1998;83:4514–9. Lebrethon MC, Avallet O, Reznik Y, Archambeaud F, Combes J, Usdin TB, et al. Food-dependent Cushing’s syndrome: characterization and functional role of gastric inhibitory polypeptide receptor in the adrenals of three patients. J Clin Endocrinol Metab US. 1998;83:4514–9.
47.
go back to reference Chabre O, Liakos P, Vivier J, Chaffanjon P, Labat-Moleur F, Martinie M, et al. Cushing’s syndrome due to a gastric inhibitory polypeptide-dependent adrenal adenoma: insights into hormonal control of adrenocortical tumorigenesis. J Clin Endocrinol Metab US. 1998;83:3134–43. Chabre O, Liakos P, Vivier J, Chaffanjon P, Labat-Moleur F, Martinie M, et al. Cushing’s syndrome due to a gastric inhibitory polypeptide-dependent adrenal adenoma: insights into hormonal control of adrenocortical tumorigenesis. J Clin Endocrinol Metab US. 1998;83:3134–43.
48.
go back to reference Luton JP, Bertherat J, Kuhn JM, Bertagna X. [aberrant expression of the GIP (Gastric inhibitory polypeptide) receptor in an adrenal cortical adenoma responsible for a case of food-dependent Cushing’s syndrome]. Bull Acad Natl Med. Netherlands; 1998;182:1839–50. Luton JP, Bertherat J, Kuhn JM, Bertagna X. [aberrant expression of the GIP (Gastric inhibitory polypeptide) receptor in an adrenal cortical adenoma responsible for a case of food-dependent Cushing’s syndrome]. Bull Acad Natl Med. Netherlands; 1998;182:1839–50.
49.
go back to reference El Ghorayeb N, Bourdeau I, Lacroix A. Multiple aberrant hormone receptors in Cushing’s syndrome. Eur J Endocrinol England. 2015;173:M45–60.CrossRef El Ghorayeb N, Bourdeau I, Lacroix A. Multiple aberrant hormone receptors in Cushing’s syndrome. Eur J Endocrinol England. 2015;173:M45–60.CrossRef
50.
go back to reference St-Jean M, El Ghorayeb N, Bourdeau I, Lacroix A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best Pract res Clin Endocrinol Metab. Netherlands; 2018;32:165–87. St-Jean M, El Ghorayeb N, Bourdeau I, Lacroix A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best Pract res Clin Endocrinol Metab. Netherlands; 2018;32:165–87.
51.
go back to reference N’Diaye N, Tremblay J, Hamet P, De Herder WW, Lacroix A. Adrenocortical overexpression of gastric inhibitory polypeptide receptor underlies food-dependent Cushing’s syndrome. J Clin Endocrinol Metab US. 1998;83:2781–5.CrossRef N’Diaye N, Tremblay J, Hamet P, De Herder WW, Lacroix A. Adrenocortical overexpression of gastric inhibitory polypeptide receptor underlies food-dependent Cushing’s syndrome. J Clin Endocrinol Metab US. 1998;83:2781–5.CrossRef
53.
go back to reference Galac S, Kars VJ, Klarenbeek S, Teerds KJ, Mol JA, Kooistra HS. Expression of receptors for luteinizing hormone, gastric-inhibitory polypeptide, and vasopressin in normal adrenal glands and cortisol-secreting adrenocortical tumors in dogs. Domest Anim Endocrinol US. 2010;39:63–75.CrossRef Galac S, Kars VJ, Klarenbeek S, Teerds KJ, Mol JA, Kooistra HS. Expression of receptors for luteinizing hormone, gastric-inhibitory polypeptide, and vasopressin in normal adrenal glands and cortisol-secreting adrenocortical tumors in dogs. Domest Anim Endocrinol US. 2010;39:63–75.CrossRef
54.
go back to reference Mazzocchi G, Rebuffat P, Meneghelli V, Malendowicz LK, Tortorella C, Gottardo G, et al. Gastric inhibitory polypeptide stimulates glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase-dependent signaling pathway. Peptides US. 1999;20:589–94.CrossRef Mazzocchi G, Rebuffat P, Meneghelli V, Malendowicz LK, Tortorella C, Gottardo G, et al. Gastric inhibitory polypeptide stimulates glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase-dependent signaling pathway. Peptides US. 1999;20:589–94.CrossRef
55.
go back to reference Bates HE, Campbell JE, Ussher JR, Baggio LL, Maida A, Seino Y, et al. Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(−/−) mice. Diabetes US. 2012;61:40–8.CrossRef Bates HE, Campbell JE, Ussher JR, Baggio LL, Maida A, Seino Y, et al. Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(−/−) mice. Diabetes US. 2012;61:40–8.CrossRef
56.
go back to reference Costa MHS, Latronico AC, Martin RM, Barbosa AS, Almeida MQ, Lotfi CFP, et al. Expression profiles of the glucose-dependent insulinotropic peptide receptor and LHCGR in sporadic adrenocortical tumors. J Endocrinol England. 2009;200:167–75.CrossRef Costa MHS, Latronico AC, Martin RM, Barbosa AS, Almeida MQ, Lotfi CFP, et al. Expression profiles of the glucose-dependent insulinotropic peptide receptor and LHCGR in sporadic adrenocortical tumors. J Endocrinol England. 2009;200:167–75.CrossRef
57.
go back to reference de Herder WW, Hofland LJ, Usdin TB, de Jong FH, Uitterlinden P, van Koetsveld P, et al. Food-dependent Cushing’s syndrome resulting from abundant expression of gastric inhibitory polypeptide receptors in adrenal adenoma cells. J Clin Endocrinol Metab US. 1996;81:3168–72. de Herder WW, Hofland LJ, Usdin TB, de Jong FH, Uitterlinden P, van Koetsveld P, et al. Food-dependent Cushing’s syndrome resulting from abundant expression of gastric inhibitory polypeptide receptors in adrenal adenoma cells. J Clin Endocrinol Metab US. 1996;81:3168–72.
58.
go back to reference Lampron A, Bourdeau I, Oble S, Godbout A, Schurch W, Arjane P, et al. Regulation of aldosterone secretion by several aberrant receptors including for glucose-dependent insulinotropic peptide in a patient with an aldosteronoma. J Clin Endocrinol Metab US. 2009;94:750–6.CrossRef Lampron A, Bourdeau I, Oble S, Godbout A, Schurch W, Arjane P, et al. Regulation of aldosterone secretion by several aberrant receptors including for glucose-dependent insulinotropic peptide in a patient with an aldosteronoma. J Clin Endocrinol Metab US. 2009;94:750–6.CrossRef
59.
go back to reference Zwermann O, Suttmann Y, Bidlingmaier M, Beuschlein F, Reincke M. Screening for membrane hormone receptor expression in primary aldosteronism. Eur J Endocrinol. England; 2009;160:443–51. Zwermann O, Suttmann Y, Bidlingmaier M, Beuschlein F, Reincke M. Screening for membrane hormone receptor expression in primary aldosteronism. Eur J Endocrinol. England; 2009;160:443–51.
61.
go back to reference Tsagarakis S, Tsigos C, Vassiliou V, Tsiotra P, Pratsinis H, Kletsas D, et al. Food-dependent androgen and cortisol secretion by a gastric inhibitory polypeptide-receptor expressive adrenocortical adenoma leading to hirsutism and subclinical Cushing’s syndrome: in vivo and in vitro studies. J Clin Endocrinol Metab US. 2001;86:583–9. Tsagarakis S, Tsigos C, Vassiliou V, Tsiotra P, Pratsinis H, Kletsas D, et al. Food-dependent androgen and cortisol secretion by a gastric inhibitory polypeptide-receptor expressive adrenocortical adenoma leading to hirsutism and subclinical Cushing’s syndrome: in vivo and in vitro studies. J Clin Endocrinol Metab US. 2001;86:583–9.
62.
go back to reference Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol US. 2005;19:2647–59.CrossRef Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol US. 2005;19:2647–59.CrossRef
63.
go back to reference Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod England. 2009;15:321–33.CrossRef Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod England. 2009;15:321–33.CrossRef
64.
go back to reference Lampron A, Bourdeau I, Hamet P, Tremblay J, Lacroix A. Whole genome expression profiling of glucose-dependent insulinotropic peptide (GIP)- and adrenocorticotropin-dependent adrenal hyperplasias reveals novel targets for the study of GIP-dependent Cushing’s syndrome. J Clin Endocrinol Metab [Internet]. Oxford University Press; 2006 [cited 2018 Nov 20];91:3611–8. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2006-0221 Lampron A, Bourdeau I, Hamet P, Tremblay J, Lacroix A. Whole genome expression profiling of glucose-dependent insulinotropic peptide (GIP)- and adrenocorticotropin-dependent adrenal hyperplasias reveals novel targets for the study of GIP-dependent Cushing’s syndrome. J Clin Endocrinol Metab [Internet]. Oxford University Press; 2006 [cited 2018 Nov 20];91:3611–8. Available from: https://​academic.​oup.​com/​jcem/​article-lookup/​doi/​10.​1210/​jc.​2006-0221
65.
go back to reference Mazzuco TL, Chabre O, Sturm N, Feige J-J, Thomas M. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model. Endocrinology US. 2006;147:782–90.CrossRef Mazzuco TL, Chabre O, Sturm N, Feige J-J, Thomas M. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model. Endocrinology US. 2006;147:782–90.CrossRef
66.
go back to reference Antonini SR, Baldacchino V, Tremblay J, Hamet P, Lacroix A. Expression of ACTH receptor pathway genes in glucose-dependent insulinotrophic peptide (GIP)-dependent Cushing’s syndrome. Clin Endocrinol (Oxf). England; 2006;64:29–36. Antonini SR, Baldacchino V, Tremblay J, Hamet P, Lacroix A. Expression of ACTH receptor pathway genes in glucose-dependent insulinotrophic peptide (GIP)-dependent Cushing’s syndrome. Clin Endocrinol (Oxf). England; 2006;64:29–36.
67.
go back to reference Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high-density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A [Internet]. 1997 [cited 2019 Jul 15];94:13600–5. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.94.25.13600 Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high-density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A [Internet]. 1997 [cited 2019 Jul 15];94:13600–5. Available from: http://​www.​pnas.​org/​cgi/​doi/​10.​1073/​pnas.​94.​25.​13600
69.
go back to reference Fujii H, Tamamori-Adachi M, Uchida K, Susa T, Nakakura T, Hagiwara H, et al. Marked cortisol production by Intracrine ACTH in GIP-treated cultured adrenal cells in which the GIP receptor was exogenously Introduced. Isales CM, editor. PLoS One [Internet]. Public Library of Science; 2014 [cited 2019 Mar 14];9:e110543. Available from: https://dx.plos.org/10.1371/journal.pone.0110543 Fujii H, Tamamori-Adachi M, Uchida K, Susa T, Nakakura T, Hagiwara H, et al. Marked cortisol production by Intracrine ACTH in GIP-treated cultured adrenal cells in which the GIP receptor was exogenously Introduced. Isales CM, editor. PLoS One [Internet]. Public Library of Science; 2014 [cited 2019 Mar 14];9:e110543. Available from: https://​dx.​plos.​org/​10.​1371/​journal.​pone.​0110543
70.
go back to reference Enyeart JJ. Biochemical and ionic signaling mechanisms for ACTH-stimulated cortisol production. Vitam Horm US. 2005;70:265–79.CrossRef Enyeart JJ. Biochemical and ionic signaling mechanisms for ACTH-stimulated cortisol production. Vitam Horm US. 2005;70:265–79.CrossRef
71.
go back to reference Louiset E, Contesse V, Groussin L, Cartier D, Duparc C, Barrande G, et al. Expression of serotonin7 receptor and coupling of ectopic receptors to protein kinase A and ionic currents in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab US. 2006;91:4578–86.CrossRef Louiset E, Contesse V, Groussin L, Cartier D, Duparc C, Barrande G, et al. Expression of serotonin7 receptor and coupling of ectopic receptors to protein kinase A and ionic currents in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab US. 2006;91:4578–86.CrossRef
72.
go back to reference Louiset E, Duparc C, Young J, Renouf S, Tetsi Nomigni M, Boutelet I, et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med US. 2013;369:2115–25.CrossRef Louiset E, Duparc C, Young J, Renouf S, Tetsi Nomigni M, Boutelet I, et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med US. 2013;369:2115–25.CrossRef
73.
go back to reference N’Diaye N, Hamet P, Tremblay J, Boutin JM, Gaboury L, Lacroix A. Asynchronous development of bilateral nodular adrenal hyperplasia in gastric inhibitory polypeptide-dependent Cushing’s syndrome. J Clin Endocrinol Metab US. 1999;84:2616–22.CrossRef N’Diaye N, Hamet P, Tremblay J, Boutin JM, Gaboury L, Lacroix A. Asynchronous development of bilateral nodular adrenal hyperplasia in gastric inhibitory polypeptide-dependent Cushing’s syndrome. J Clin Endocrinol Metab US. 1999;84:2616–22.CrossRef
74.
go back to reference Bourdeau I, Antonini SR, Lacroix A, Kirschner LS, Matyakhina L, Lorang D, et al. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene [Internet]. Nature Publishing Group; 2004 [cited 2018 Nov 20];23:1575–85. Available from: http://www.nature.com/articles/1207277 Bourdeau I, Antonini SR, Lacroix A, Kirschner LS, Matyakhina L, Lorang D, et al. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene [Internet]. Nature Publishing Group; 2004 [cited 2018 Nov 20];23:1575–85. Available from: http://​www.​nature.​com/​articles/​1207277
75.
go back to reference Albiger NM, Occhi G, Mariniello B, Iacobone M, Favia G, Fassina A, et al. Food-dependent Cushing’s syndrome: from molecular characterization to therapeutical results. Eur J Endocrinol England. 2007;157:771–8.CrossRef Albiger NM, Occhi G, Mariniello B, Iacobone M, Favia G, Fassina A, et al. Food-dependent Cushing’s syndrome: from molecular characterization to therapeutical results. Eur J Endocrinol England. 2007;157:771–8.CrossRef
76.
go back to reference Mircescu H, Jilwan J, N’Diaye N, Bourdeau I, Tremblay J, Hamet P, et al. Are ectopic or abnormal membrane hormone receptors frequently present in adrenal Cushing’s syndrome? J Clin Endocrinol Metab US. 2000;85:3531–6. Mircescu H, Jilwan J, N’Diaye N, Bourdeau I, Tremblay J, Hamet P, et al. Are ectopic or abnormal membrane hormone receptors frequently present in adrenal Cushing’s syndrome? J Clin Endocrinol Metab US. 2000;85:3531–6.
77.
go back to reference Bertherat J, Contesse V, Louiset E, Barrande G, Duparc C, Groussin L, et al. In vivo and in vitro screening for illegitimate receptors in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome: identification of two cases of gonadotropin/gastric inhibitory polypeptide-dependent hypercortisolism. J Clin Endocrinol Metab US. 2005;90:1302–10.CrossRef Bertherat J, Contesse V, Louiset E, Barrande G, Duparc C, Groussin L, et al. In vivo and in vitro screening for illegitimate receptors in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome: identification of two cases of gonadotropin/gastric inhibitory polypeptide-dependent hypercortisolism. J Clin Endocrinol Metab US. 2005;90:1302–10.CrossRef
78.
go back to reference Lacroix A, Bourdeau I, Lampron A, Mazzuco TL, Tremblay J, Hamet P. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin Endocrinol (Oxf). England; 2010;73:1–15. Lacroix A, Bourdeau I, Lampron A, Mazzuco TL, Tremblay J, Hamet P. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin Endocrinol (Oxf). England; 2010;73:1–15.
79.
go back to reference Antonini SR, N’Diaye N, Baldacchino V, Hamet P, Tremblay J, Lacroix A. Analysis of the putative regulatory region of the gastric inhibitory polypeptide receptor gene in food-dependent Cushing’s syndrome. J Steroid Biochem Mol Biol England. 2004;91:171–7.CrossRef Antonini SR, N’Diaye N, Baldacchino V, Hamet P, Tremblay J, Lacroix A. Analysis of the putative regulatory region of the gastric inhibitory polypeptide receptor gene in food-dependent Cushing’s syndrome. J Steroid Biochem Mol Biol England. 2004;91:171–7.CrossRef
80.
go back to reference Baldacchino V, Oble S, Decarie P-O, Bourdeau I, Hamet P, Tremblay J, et al. The Sp transcription factors are involved in the cellular expression of the human glucose-dependent insulinotropic polypeptide receptor gene and overexpressed in adrenals of patients with Cushing’s syndrome. J Mol Endocrinol England. 2005;35:61–71.CrossRef Baldacchino V, Oble S, Decarie P-O, Bourdeau I, Hamet P, Tremblay J, et al. The Sp transcription factors are involved in the cellular expression of the human glucose-dependent insulinotropic polypeptide receptor gene and overexpressed in adrenals of patients with Cushing’s syndrome. J Mol Endocrinol England. 2005;35:61–71.CrossRef
81.
82.
go back to reference Lecoq A-L, Stratakis CA, Viengchareun S, Chaligné R, Tosca L, Deméocq V, et al. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight [Internet]. American Society for Clinical Investigation; 2017 [cited 2019 Feb 28];2. Available from: https://insight.jci.org/articles/view/92184 Lecoq A-L, Stratakis CA, Viengchareun S, Chaligné R, Tosca L, Deméocq V, et al. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight [Internet]. American Society for Clinical Investigation; 2017 [cited 2019 Feb 28];2. Available from: https://​insight.​jci.​org/​articles/​view/​92184
83.
go back to reference Mazzuco TL, Chabre O, Feige JJ, Thomas M. Aberrant GPCR expression is a sufficient genetic event to trigger adrenocortical tumorigenesis. Mol Cell Endocrinol Ireland. 2007;265–266:23–8.CrossRef Mazzuco TL, Chabre O, Feige JJ, Thomas M. Aberrant GPCR expression is a sufficient genetic event to trigger adrenocortical tumorigenesis. Mol Cell Endocrinol Ireland. 2007;265–266:23–8.CrossRef
84.
go back to reference Assie G, Libe R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med US. 2013;369:2105–14.CrossRef Assie G, Libe R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med US. 2013;369:2105–14.CrossRef
85.
go back to reference Alencar GA, Lerario AM, Nishi MY, de Mariani BMP, Almeida MQ, Tremblay J, et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab US. 2014;99:E1501–9.CrossRef Alencar GA, Lerario AM, Nishi MY, de Mariani BMP, Almeida MQ, Tremblay J, et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab US. 2014;99:E1501–9.CrossRef
86.
go back to reference Gagliardi L, Hotu C, Casey G, Braund WJ, Ling K-H, Dodd T, et al. Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds. Clin Endocrinol (Oxf). England; 2009;70:883–91. Gagliardi L, Hotu C, Casey G, Braund WJ, Ling K-H, Dodd T, et al. Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds. Clin Endocrinol (Oxf). England; 2009;70:883–91.
87.
go back to reference Lee S, Hwang R, Lee J, Rhee Y, Kim DJ, Chung U-I, et al. Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia. Clin Endocrinol (Oxf). England; 2005;63:625–30. Lee S, Hwang R, Lee J, Rhee Y, Kim DJ, Chung U-I, et al. Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia. Clin Endocrinol (Oxf). England; 2005;63:625–30.
88.
go back to reference Vezzosi D, Cartier D, Regnier C, Otal P, Bennet A, Parmentier F, et al. Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol England. 2007;156:21–31.CrossRef Vezzosi D, Cartier D, Regnier C, Otal P, Bennet A, Parmentier F, et al. Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol England. 2007;156:21–31.CrossRef
89.
go back to reference Miyamura N, Taguchi T, Murata Y, Taketa K, Iwashita S, Matsumoto K, et al. Inherited adrenocorticotropin-independent macronodular adrenal hyperplasia with abnormal cortisol secretion by vasopressin and catecholamines: detection of the aberrant hormone receptors on adrenal gland. Endocrine US. 2002;19:319–26.CrossRef Miyamura N, Taguchi T, Murata Y, Taketa K, Iwashita S, Matsumoto K, et al. Inherited adrenocorticotropin-independent macronodular adrenal hyperplasia with abnormal cortisol secretion by vasopressin and catecholamines: detection of the aberrant hormone receptors on adrenal gland. Endocrine US. 2002;19:319–26.CrossRef
91.
go back to reference Skogseid B, Larsson C, Lindgren PG, Kvanta E, Rastad J, Theodorsson E, et al. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J Clin Endocrinol Metab [Internet]. 1992 [cited 2019 Jun 18];75:76–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1352309. Skogseid B, Larsson C, Lindgren PG, Kvanta E, Rastad J, Theodorsson E, et al. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J Clin Endocrinol Metab [Internet]. 1992 [cited 2019 Jun 18];75:76–81. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1352309.
93.
go back to reference Costa MHS, Domenice S, Toledo RA, Lourenco DMJ, Latronico AC, Pinto EM, et al. Glucose-dependent insulinotropic peptide receptor overexpression in adrenocortical hyperplasia in MEN1 syndrome without loss of heterozygosity at the 11q13 locus. Clinics (Sao Paulo). Brazil; 2011;66:529–33. Costa MHS, Domenice S, Toledo RA, Lourenco DMJ, Latronico AC, Pinto EM, et al. Glucose-dependent insulinotropic peptide receptor overexpression in adrenocortical hyperplasia in MEN1 syndrome without loss of heterozygosity at the 11q13 locus. Clinics (Sao Paulo). Brazil; 2011;66:529–33.
94.
go back to reference Espiard S, Drougat L, Libe R, Assie G, Perlemoine K, Guignat L, et al. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab US. 2015;100:E926–35.CrossRef Espiard S, Drougat L, Libe R, Assie G, Perlemoine K, Guignat L, et al. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab US. 2015;100:E926–35.CrossRef
95.
go back to reference Albiger NM, Regazzo D, Rubin B, Ferrara AM, Rizzati S, Taschin E, et al. A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype. Endocrine. 2017;55:959–68.CrossRefPubMed Albiger NM, Regazzo D, Rubin B, Ferrara AM, Rizzati S, Taschin E, et al. A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype. Endocrine. 2017;55:959–68.CrossRefPubMed
97.
go back to reference Miyashita K, Itoh H, Nakao K. [ACTH-independent macronodular adrenal hyperplasia]. Nihon Rinsho. Japan; 2006;Suppl 1:614–7. Miyashita K, Itoh H, Nakao K. [ACTH-independent macronodular adrenal hyperplasia]. Nihon Rinsho. Japan; 2006;Suppl 1:614–7.
98.
go back to reference Swain JM, Grant CS, Schlinkert RT, Thompson GB, VanHeerden JA, Lloyd R V, et al. Corticotropin-independent macronodular adrenal hyperplasia: a clinicopathologic correlation. Arch Surg. United States; 1998;133:541–6. Swain JM, Grant CS, Schlinkert RT, Thompson GB, VanHeerden JA, Lloyd R V, et al. Corticotropin-independent macronodular adrenal hyperplasia: a clinicopathologic correlation. Arch Surg. United States; 1998;133:541–6.
99.
go back to reference Christopoulos S, Bourdeau I, Lacroix A. Clinical and subclinical ACTH-independent macronodular adrenal hyperplasia and aberrant hormone receptors. Horm Res Switzerland. 2005;64:119–31. Christopoulos S, Bourdeau I, Lacroix A. Clinical and subclinical ACTH-independent macronodular adrenal hyperplasia and aberrant hormone receptors. Horm Res Switzerland. 2005;64:119–31.
100.
go back to reference Lacroix A, N’Diaye N, Mircescu H, Tremblay J, Hamet P. The diversity of abnormal hormone receptors in adrenal Cushing’s syndrome allows novel pharmacological therapies. Brazilian J Med biol res = rev bras Pesqui medicas e biol. Brazil; 2000;33:1201–9. Lacroix A, N’Diaye N, Mircescu H, Tremblay J, Hamet P. The diversity of abnormal hormone receptors in adrenal Cushing’s syndrome allows novel pharmacological therapies. Brazilian J Med biol res = rev bras Pesqui medicas e biol. Brazil; 2000;33:1201–9.
101.
go back to reference Croughs RJ, Zelissen PM, van Vroonhoven TJ, Hofland LJ, N’Diaye N, Lacroix A, et al. GIP-dependent adrenal Cushing’s syndrome with incomplete suppression of ACTH. Clin Endocrinol (Oxf). England; 2000;52:235–40. Croughs RJ, Zelissen PM, van Vroonhoven TJ, Hofland LJ, N’Diaye N, Lacroix A, et al. GIP-dependent adrenal Cushing’s syndrome with incomplete suppression of ACTH. Clin Endocrinol (Oxf). England; 2000;52:235–40.
106.
go back to reference Moss CE, Marsh WJ, Parker HE, Ogunnowo-Bada E, Riches CH, Habib AM, et al. Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. Diabetologia Germany. 2012;55:3094–103.CrossRef Moss CE, Marsh WJ, Parker HE, Ogunnowo-Bada E, Riches CH, Habib AM, et al. Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. Diabetologia Germany. 2012;55:3094–103.CrossRef
107.
go back to reference Henry RR, Ciaraldi TP, Armstrong D, Burke P, Ligueros-Saylan M, Mudaliar S. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab US. 2013;98:3446–53.CrossRef Henry RR, Ciaraldi TP, Armstrong D, Burke P, Ligueros-Saylan M, Mudaliar S. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab US. 2013;98:3446–53.CrossRef
108.
go back to reference Unger N, Serdiuk I, Sheu SY, Walz MK, Schulz S, Schmid KW, et al. Immunohistochemical determination of somatostatin receptor subtypes 1, 2A, 3, 4, and 5 in various adrenal tumors. Endocr Res England. 2004;30:931–4.CrossRef Unger N, Serdiuk I, Sheu SY, Walz MK, Schulz S, Schmid KW, et al. Immunohistochemical determination of somatostatin receptor subtypes 1, 2A, 3, 4, and 5 in various adrenal tumors. Endocr Res England. 2004;30:931–4.CrossRef
109.
go back to reference Bourdeau I, D’Amour P, Hamet P, Boutin JM, Lacroix A. Aberrant membrane hormone receptors in incidentally discovered bilateral macronodular adrenal hyperplasia with subclinical Cushing’s syndrome. J Clin Endocrinol Metab US. 2001;86:5534–40. Bourdeau I, D’Amour P, Hamet P, Boutin JM, Lacroix A. Aberrant membrane hormone receptors in incidentally discovered bilateral macronodular adrenal hyperplasia with subclinical Cushing’s syndrome. J Clin Endocrinol Metab US. 2001;86:5534–40.
110.
go back to reference Preumont V, Mermejo LM, Damoiseaux P, Lacroix A, Maiter D. Transient efficacy of octreotide and pasireotide (SOM230) treatment in GIP-dependent Cushing’s syndrome. Horm Metab res = Horm und Stoffwechselforsch = Horm Metab. Germany; 2011;43:287–91. Preumont V, Mermejo LM, Damoiseaux P, Lacroix A, Maiter D. Transient efficacy of octreotide and pasireotide (SOM230) treatment in GIP-dependent Cushing’s syndrome. Horm Metab res = Horm und Stoffwechselforsch = Horm Metab. Germany; 2011;43:287–91.
111.
go back to reference Karapanou O, Vlassopoulou B, Tzanela M, Stratigou T, Tsatlidis V, Tsirona S, et al. Adrenocorticotropic hormone independent macronodular adrenal hyperplasia due to aberrant receptor expression: is medical treatment always an option? Endocr Pract US. 2013;19:e77–82.CrossRef Karapanou O, Vlassopoulou B, Tzanela M, Stratigou T, Tsatlidis V, Tsirona S, et al. Adrenocorticotropic hormone independent macronodular adrenal hyperplasia due to aberrant receptor expression: is medical treatment always an option? Endocr Pract US. 2013;19:e77–82.CrossRef
114.
116.
go back to reference Occhi G, Losa M, Albiger N, Trivellin G, Regazzo D, Scanarini M, et al. The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells. J Neuroendocrinol [Internet]. 2011 [cited 2018 Nov 22];23:641–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21554434. Occhi G, Losa M, Albiger N, Trivellin G, Regazzo D, Scanarini M, et al. The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells. J Neuroendocrinol [Internet]. 2011 [cited 2018 Nov 22];23:641–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21554434.
119.
go back to reference Regazzo D, Losa M, Albiger NM, Terreni MR, Vazza G, Ceccato F, et al. The GIP/GIPR axis is functionally linked to GH-secretion increase in a significant proportion of gsp-somatotropinomas. Eur J Endocrinol. 2017;176:543–53.CrossRefPubMed Regazzo D, Losa M, Albiger NM, Terreni MR, Vazza G, Ceccato F, et al. The GIP/GIPR axis is functionally linked to GH-secretion increase in a significant proportion of gsp-somatotropinomas. Eur J Endocrinol. 2017;176:543–53.CrossRefPubMed
122.
go back to reference Landis C, Masters S, Spada A, Pace A, Bourne H, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340:692–6.CrossRefPubMed Landis C, Masters S, Spada A, Pace A, Bourne H, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340:692–6.CrossRefPubMed
124.
go back to reference Gourdji D, Bataille D, Vauclin N, Grouselle D, Rosselin G, Tixier-Vidal A. Vasoactive intestinal peptide (VIP) stimulates prolactin (PRL) release and cAMP production in a rat pituitary cell line (GH3/B6). Additive effects of VIP and TRH on PRL release. FEBS Lett [Internet]. 1979 [cited 2019 may 17];104:165–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/89971. Gourdji D, Bataille D, Vauclin N, Grouselle D, Rosselin G, Tixier-Vidal A. Vasoactive intestinal peptide (VIP) stimulates prolactin (PRL) release and cAMP production in a rat pituitary cell line (GH3/B6). Additive effects of VIP and TRH on PRL release. FEBS Lett [Internet]. 1979 [cited 2019 may 17];104:165–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​89971.
127.
go back to reference Billestrup N, Swanson LW, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci U S A. 1986;83:6854–7.CrossRefPubMedPubMedCentral Billestrup N, Swanson LW, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci U S A. 1986;83:6854–7.CrossRefPubMedPubMedCentral
128.
go back to reference Välimäki N, Demir H, Pitkänen E, Kaasinen E, Karppinen A, Kivipelto L, et al. Whole-genome sequencing of growth hormone (GH)-secreting pituitary adenomas. J Clin Endocrinol Metab. 2015;100:3918–27.CrossRefPubMed Välimäki N, Demir H, Pitkänen E, Kaasinen E, Karppinen A, Kivipelto L, et al. Whole-genome sequencing of growth hormone (GH)-secreting pituitary adenomas. J Clin Endocrinol Metab. 2015;100:3918–27.CrossRefPubMed
129.
go back to reference Ronchi CL, Peverelli E, Herterich S, Weigand I, Mantovani G, Schwarzmayr T, et al. Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas. Eur J Endocrinol. 2016;174:363–72.CrossRefPubMed Ronchi CL, Peverelli E, Herterich S, Weigand I, Mantovani G, Schwarzmayr T, et al. Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas. Eur J Endocrinol. 2016;174:363–72.CrossRefPubMed
130.
go back to reference Bilezikjian LM, Vale WW. Stimulation of adenosine 3′,5′-monophosphate production by growth hormone-releasing factor and its inhibition by somatostatin in anterior pituitary cells in vitro. Endocrinology. 1983;113:1726–31.CrossRefPubMed Bilezikjian LM, Vale WW. Stimulation of adenosine 3′,5′-monophosphate production by growth hormone-releasing factor and its inhibition by somatostatin in anterior pituitary cells in vitro. Endocrinology. 1983;113:1726–31.CrossRefPubMed
131.
go back to reference Bilezikjian LM, Erlichman J, Fleischer N, Vale WW. Differential activation of type I and type II 3′, 5′-cyclic adenosine monophosphate-dependent protein kinases by growth gormone-releasing factor. Mol Endocrinol. 1987;1:137–46.CrossRefPubMed Bilezikjian LM, Erlichman J, Fleischer N, Vale WW. Differential activation of type I and type II 3′, 5′-cyclic adenosine monophosphate-dependent protein kinases by growth gormone-releasing factor. Mol Endocrinol. 1987;1:137–46.CrossRefPubMed
132.
go back to reference Shepard AR, Zhang W, Eberhardt NL. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells. J Biol Chem. 1994;269:1804–14.PubMed Shepard AR, Zhang W, Eberhardt NL. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells. J Biol Chem. 1994;269:1804–14.PubMed
136.
go back to reference De Marinis L, Mancini A, Bianchi A, Gentilella R, Valle D, Giampietro A, et al. Preoperative growth hormone response to thyrotropin-releasing hormone and oral glucose tolerance test in acromegaly: a retrospective evaluation of 50 patients. Metabolism. 2002;51:616–21.CrossRefPubMed De Marinis L, Mancini A, Bianchi A, Gentilella R, Valle D, Giampietro A, et al. Preoperative growth hormone response to thyrotropin-releasing hormone and oral glucose tolerance test in acromegaly: a retrospective evaluation of 50 patients. Metabolism. 2002;51:616–21.CrossRefPubMed
137.
138.
go back to reference Shekhawat VS, Bhansali S, Dutta P, Mukherjee KK, Vaiphei K, Kochhar R, et al. Glucose-dependent insulinotropic polypeptide (GIP) resistance and β-cell dysfunction contribute to hyperglycaemia in acromegaly. Sci Rep [Internet]. Nature Publishing Group; 2019 [cited 2019 Apr 19];9:5646. Available from: http://www.nature.com/articles/s41598-019-41887-7 Shekhawat VS, Bhansali S, Dutta P, Mukherjee KK, Vaiphei K, Kochhar R, et al. Glucose-dependent insulinotropic polypeptide (GIP) resistance and β-cell dysfunction contribute to hyperglycaemia in acromegaly. Sci Rep [Internet]. Nature Publishing Group; 2019 [cited 2019 Apr 19];9:5646. Available from: http://​www.​nature.​com/​articles/​s41598-019-41887-7
140.
go back to reference Oberg K, Knigge U, Kwekkeboom D, Perren A, ESMO Guidelines Working Group. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2012 [cited 2019 may 22];23:vii124–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22997445. Oberg K, Knigge U, Kwekkeboom D, Perren A, ESMO Guidelines Working Group. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2012 [cited 2019 may 22];23:vii124–30. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22997445.
144.
146.
go back to reference Waser B, Beetschen K, Pellegata NS, Reubi JC. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology [Internet]. Karger Publishers; 2011 [cited 2019 Feb 8];94:291–301. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21893952. Waser B, Beetschen K, Pellegata NS, Reubi JC. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology [Internet]. Karger Publishers; 2011 [cited 2019 Feb 8];94:291–301. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21893952.
150.
go back to reference Körner M, Waser B, Reubi JC. Does somatostatin or gastric inhibitory peptide receptor expression correlate with tumor grade and stage in gut neuroendocrine tumors? Neuroendocrinology [Internet]. 2015 [cited 2019 Feb 8];101:45–57. Available from: www.karger.com/nen Körner M, Waser B, Reubi JC. Does somatostatin or gastric inhibitory peptide receptor expression correlate with tumor grade and stage in gut neuroendocrine tumors? Neuroendocrinology [Internet]. 2015 [cited 2019 Feb 8];101:45–57. Available from: www.​karger.​com/​nen
152.
go back to reference Kim DH, Nagano Y, Choi I-S, White JA, Yao JC, Rashid A. Allelic alterations in well-differentiated neuroendocrine tumors (carcinoid tumors) identified by genome-wide single nucleotide polymorphism analysis and comparison with pancreatic endocrine tumors. Genes, Chromosom Cancer [Internet]. John Wiley & Sons, Ltd; 2008 [cited 2019 Feb 28];47:84–92. Available from: http://doi.wiley.com/10.1002/gcc.20510 Kim DH, Nagano Y, Choi I-S, White JA, Yao JC, Rashid A. Allelic alterations in well-differentiated neuroendocrine tumors (carcinoid tumors) identified by genome-wide single nucleotide polymorphism analysis and comparison with pancreatic endocrine tumors. Genes, Chromosom Cancer [Internet]. John Wiley & Sons, Ltd; 2008 [cited 2019 Feb 28];47:84–92. Available from: http://​doi.​wiley.​com/​10.​1002/​gcc.​20510
158.
go back to reference Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest [Internet]. American Society for Clinical Investigation; 2013 [cited 2019 Feb 28];123:2502–8. Available from: https://www.jci.org/articles/view/67963 Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest [Internet]. American Society for Clinical Investigation; 2013 [cited 2019 Feb 28];123:2502–8. Available from: https://​www.​jci.​org/​articles/​view/​67963
159.
go back to reference Tönnies H, Toliat MR, Ramel C, Pape UF, Neitzel H, Berger W, et al. Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut [Internet]. BMJ Publishing Group; 2001 [cited 2019 Feb 28];48:536–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11247899. Tönnies H, Toliat MR, Ramel C, Pape UF, Neitzel H, Berger W, et al. Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut [Internet]. BMJ Publishing Group; 2001 [cited 2019 Feb 28];48:536–41. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11247899.
160.
162.
go back to reference Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, et al. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin Cancer Res [Internet]. American Association for Cancer Research; 2016 [cited 2019 Feb 22];22:250–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26169971. Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, et al. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin Cancer Res [Internet]. American Association for Cancer Research; 2016 [cited 2019 Feb 22];22:250–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26169971.
163.
go back to reference Gourni E, Waser B, Clerc P, Fourmy D, Reubi JC, Maecke HR. The glucose-dependent insulinotropic polypeptide receptor: a novel target for neuroendocrine tumor imaging-first preclinical studies. J Nucl Med [Internet]. Society of Nuclear Medicine; 2014 [cited 2019 Feb 19];55:976–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24744444. Gourni E, Waser B, Clerc P, Fourmy D, Reubi JC, Maecke HR. The glucose-dependent insulinotropic polypeptide receptor: a novel target for neuroendocrine tumor imaging-first preclinical studies. J Nucl Med [Internet]. Society of Nuclear Medicine; 2014 [cited 2019 Feb 19];55:976–82. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24744444.
164.
go back to reference Willekens SMA, Joosten L, Boerman OC, Brom M, Gotthardt M. Characterization of 111In-labeled glucose-dependent insulinotropic polypeptide as a radiotracer for neuroendocrine tumors. Sci Rep [Internet]. Nature Publishing Group; 2018 [cited 2019 Feb 19];8:2948. Available from: http://www.nature.com/articles/s41598-018-21259-3 Willekens SMA, Joosten L, Boerman OC, Brom M, Gotthardt M. Characterization of 111In-labeled glucose-dependent insulinotropic polypeptide as a radiotracer for neuroendocrine tumors. Sci Rep [Internet]. Nature Publishing Group; 2018 [cited 2019 Feb 19];8:2948. Available from: http://​www.​nature.​com/​articles/​s41598-018-21259-3
166.
go back to reference Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, et al. Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int J Mol Sci [Internet]. Multidisciplinary Digital Publishing Institute; 2019 [cited 2019 Jul 25];20:3049. Available from: https://www.mdpi.com/1422-0067/20/12/3049 Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, et al. Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int J Mol Sci [Internet]. Multidisciplinary Digital Publishing Institute; 2019 [cited 2019 Jul 25];20:3049. Available from: https://​www.​mdpi.​com/​1422-0067/​20/​12/​3049
168.
go back to reference Dall’Asta C, Ballare E, Mantovani G, Ambrosi B, Spada A, Barbetta L, et al. Assessing the presence of abnormal regulation of cortisol secretion by membrane hormone receptors: in vivo and in vitro studies in patients with functioning and non-functioning adrenal adenoma. Horm Metab Res=Horm und Stoffwechselforsch=Horm Metab. Germany; 2004;36:578–83. Dall’Asta C, Ballare E, Mantovani G, Ambrosi B, Spada A, Barbetta L, et al. Assessing the presence of abnormal regulation of cortisol secretion by membrane hormone receptors: in vivo and in vitro studies in patients with functioning and non-functioning adrenal adenoma. Horm Metab Res=Horm und Stoffwechselforsch=Horm Metab. Germany; 2004;36:578–83.
169.
go back to reference Noordam C, Hermus ARMM, Pesman G, N’Diaye N, Sweep CGJ, Lacroix A, et al. An adolescent with food-dependent Cushing’s syndrome secondary to ectopic expression of GIP receptor in unilateral adrenal adenoma. J Pediatr Endocrinol Metab. Germany; 2002;15:853–60. Noordam C, Hermus ARMM, Pesman G, N’Diaye N, Sweep CGJ, Lacroix A, et al. An adolescent with food-dependent Cushing’s syndrome secondary to ectopic expression of GIP receptor in unilateral adrenal adenoma. J Pediatr Endocrinol Metab. Germany; 2002;15:853–60.
Metadata
Title
The pathogenic role of the GIP/GIPR axis in human endocrine tumors: emerging clinical mechanisms beyond diabetes
Authors
Daniela Regazzo
Mattia Barbot
Carla Scaroni
Nora Albiger
Gianluca Occhi
Publication date
01-03-2020
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 1/2020
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-019-09536-6

Other articles of this Issue 1/2020

Reviews in Endocrine and Metabolic Disorders 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.