Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 1/2020

01-03-2020 | Estradiol

Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins

Authors: Carlos-Camilo Silva, Roberto Domínguez

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 1/2020

Login to get access

Abstract

Several aspects of the physiology and behavior of organisms are expressed rhythmically with a 24-h periodicity and hence called circadian rhythms. Such rhythms are thought to be an adaptive response that allows to anticipate cyclic events in the environment. In mammals, the circadian system is a hierarchically organized net of endogenous oscillators driven by the hypothalamic suprachiasmatic nucleus (SCN). This system is synchronized by the environment throughout afferent pathways and in turn it organizes the activity of tissues by means of humoral secretions and neuronal projections. It has been shown that reproductive cycles are regulated by the circadian system. In rodents, the lesion of the SCN results on alterations of the estrous cycle, sexual behavior, tonic and phasic secretion of gonadotropin releasing hormone (GnRH)/gonadotropins and in the failure of ovulation. Most of the studies regarding the circadian control of reproduction, in particular of ovulation, have only focused on the participation of the SCN in the triggering of the proestrus surge of gonadotropins. Here we review aspects of the evolution and organization of the circadian system with particular focus on its relationship with the reproductive cycle of laboratory rodents. Experimental evidence of circadian control of neuroendocrine events indispensable for ovulation that occur prior to proestrus are discussed. In order to offer a working model of the circadian regulation of reproduction, its participation on aspects ranging from gamete production, neuroendocrine regulation, sexual behavior, mating coordination, pregnancy and deliver of the product should be assessed experimentally.
Literature
1.
go back to reference Bhadra U, Thakkar N, Das P, Bhadra MP. Evolution of circadian rhythms: from bacteria to human. Sleep Med. 2017;35:49–61.CrossRefPubMed Bhadra U, Thakkar N, Das P, Bhadra MP. Evolution of circadian rhythms: from bacteria to human. Sleep Med. 2017;35:49–61.CrossRefPubMed
2.
go back to reference Roenneberg T, Merrow M. What watch? ... Such much! Complexity and evolution of circadian clocks. Cell Tissue Res. 2002;309:3–9.CrossRefPubMed Roenneberg T, Merrow M. What watch? ... Such much! Complexity and evolution of circadian clocks. Cell Tissue Res. 2002;309:3–9.CrossRefPubMed
3.
go back to reference Refinetti R. Circadian physiology. 3rd ed. CRC Press; 2016. Refinetti R. Circadian physiology. 3rd ed. CRC Press; 2016.
4.
go back to reference Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001;2:702–15.CrossRefPubMed Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001;2:702–15.CrossRefPubMed
7.
go back to reference Vaze KM, Sharma VK. On the adaptive significance of circadian clocks for their owners. Chronobiol Int. 2013;30:413–33.CrossRefPubMed Vaze KM, Sharma VK. On the adaptive significance of circadian clocks for their owners. Chronobiol Int. 2013;30:413–33.CrossRefPubMed
8.
go back to reference Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A. 1998;95:8660–4.CrossRefPubMedPubMedCentral Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A. 1998;95:8660–4.CrossRefPubMedPubMedCentral
9.
go back to reference Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 2004;14:1481–6.CrossRefPubMed Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 2004;14:1481–6.CrossRefPubMed
10.
go back to reference Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science. 2016;353:587–90.CrossRefPubMed Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science. 2016;353:587–90.CrossRefPubMed
11.
go back to reference Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science. 2003;302:1049–53.CrossRefPubMed Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science. 2003;302:1049–53.CrossRefPubMed
12.
go back to reference Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2002;99:2134–9.CrossRefPubMedPubMedCentral Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2002;99:2134–9.CrossRefPubMedPubMedCentral
13.
go back to reference DeCoursey PJ, Krulas JR, Mele G, Holley DC. Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav. 1997;62:1099–108.CrossRefPubMed DeCoursey PJ, Krulas JR, Mele G, Holley DC. Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav. 1997;62:1099–108.CrossRefPubMed
14.
go back to reference DeCoursey PJ. Survival value of suprachiasmatic nuclei (SCN) in four wild sciurid rodents. Behav Neurosci. 2014;128:240–9.CrossRefPubMed DeCoursey PJ. Survival value of suprachiasmatic nuclei (SCN) in four wild sciurid rodents. Behav Neurosci. 2014;128:240–9.CrossRefPubMed
15.
go back to reference Cloudsley-Thompson JL. Adaptive functions of circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:345–55.CrossRefPubMed Cloudsley-Thompson JL. Adaptive functions of circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:345–55.CrossRefPubMed
16.
go back to reference Adler NT. Social and environmental control of reproductive processes in animals. In McGill TE, Dewsbury DA, Sachs BD, editors Sex and Behavior: Status and Prospectus. Springer Science. 1978. pp: 115–160. Adler NT. Social and environmental control of reproductive processes in animals. In McGill TE, Dewsbury DA, Sachs BD, editors Sex and Behavior: Status and Prospectus. Springer Science. 1978. pp: 115–160.
17.
go back to reference Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24:90–9.CrossRefPubMed Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24:90–9.CrossRefPubMed
18.
go back to reference Takahashi JS. Molecular components of the circadian clock in mammals. 2015; 17:6–11. Takahashi JS. Molecular components of the circadian clock in mammals. 2015; 17:6–11.
19.
go back to reference Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.CrossRefPubMed Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.CrossRefPubMed
20.
go back to reference Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol. 2000;20:4888–99.CrossRefPubMedPubMedCentral Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol. 2000;20:4888–99.CrossRefPubMedPubMedCentral
21.
go back to reference Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 2000;288:483–92.CrossRefPubMedPubMedCentral Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 2000;288:483–92.CrossRefPubMedPubMedCentral
22.
go back to reference Duffield GE. DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol. 2003;15:991–1002.CrossRefPubMed Duffield GE. DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol. 2003;15:991–1002.CrossRefPubMed
23.
go back to reference Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41.CrossRefPubMedPubMedCentral Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41.CrossRefPubMedPubMedCentral
24.
go back to reference Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.CrossRefPubMed Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.CrossRefPubMed
25.
go back to reference Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. The Annual Review of Physiology. 2010;72:517–49.CrossRefPubMed Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. The Annual Review of Physiology. 2010;72:517–49.CrossRefPubMed
26.
go back to reference Van den Pol AN. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol. 1980;191:661–702.CrossRefPubMed Van den Pol AN. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol. 1980;191:661–702.CrossRefPubMed
27.
go back to reference Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916:172–91.CrossRefPubMed Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916:172–91.CrossRefPubMed
28.
go back to reference Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69:1583–6.CrossRefPubMedPubMedCentral Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69:1583–6.CrossRefPubMedPubMedCentral
29.
go back to reference Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.CrossRefPubMed Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.CrossRefPubMed
30.
go back to reference Schwartz WJ, Gainer H. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science. 1977;197:1089–91.CrossRefPubMed Schwartz WJ, Gainer H. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science. 1977;197:1089–91.CrossRefPubMed
31.
go back to reference Inouye ST, Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 1979;76:5962–6.CrossRefPubMedPubMedCentral Inouye ST, Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 1979;76:5962–6.CrossRefPubMedPubMedCentral
32.
go back to reference Groos GA, Hendriks J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett. 1982;34:283–8.CrossRefPubMed Groos GA, Hendriks J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett. 1982;34:283–8.CrossRefPubMed
33.
go back to reference Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997;19:1261–9.CrossRefPubMed Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997;19:1261–9.CrossRefPubMed
34.
go back to reference Schwartz WJ, Reppert SM. Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei. J Neurosci. 1985;5:2771–8.CrossRefPubMedPubMedCentral Schwartz WJ, Reppert SM. Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei. J Neurosci. 1985;5:2771–8.CrossRefPubMedPubMedCentral
35.
go back to reference Earnest DJ, Sladek CD. Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res. 1986;382:129–33.CrossRefPubMed Earnest DJ, Sladek CD. Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res. 1986;382:129–33.CrossRefPubMed
36.
go back to reference Takahashi Y, Okamura H, Yanaihara N, Hamada S, Fujita S, Ibata Y. Vasoactive intestinal peptide immunoreactive neurons in the rat suprachiasmatic nucleus demonstrate diurnal variation. Brain Res. 1989;497:374–7.CrossRefPubMed Takahashi Y, Okamura H, Yanaihara N, Hamada S, Fujita S, Ibata Y. Vasoactive intestinal peptide immunoreactive neurons in the rat suprachiasmatic nucleus demonstrate diurnal variation. Brain Res. 1989;497:374–7.CrossRefPubMed
37.
go back to reference Shinohara K, Honma S, Katsuno Y, Abe H, Honma K. Circadian rhythms in the release of vasoactive intestinal polypeptide and arginine-vasopressin in organotypic slice culture of rat suprachiasmatic nucleus. Neurosci Lett. 1994;170:183–6.CrossRefPubMed Shinohara K, Honma S, Katsuno Y, Abe H, Honma K. Circadian rhythms in the release of vasoactive intestinal polypeptide and arginine-vasopressin in organotypic slice culture of rat suprachiasmatic nucleus. Neurosci Lett. 1994;170:183–6.CrossRefPubMed
38.
go back to reference Drucker-Colín R, Aguilar-Roblero R, García-Hernández F, Fernández-Cancino F, Bermudez RF. Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res. 1984;311:353–7.CrossRefPubMed Drucker-Colín R, Aguilar-Roblero R, García-Hernández F, Fernández-Cancino F, Bermudez RF. Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res. 1984;311:353–7.CrossRefPubMed
39.
go back to reference Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci Off J Soc Neurosci. 1987;7:1626–38.CrossRef Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci Off J Soc Neurosci. 1987;7:1626–38.CrossRef
40.
go back to reference Saitoh Y, Matsui Y, Nihonmatsu I, Kawamura H. Cross-species transplantation of the suprachiasmatic nuclei from rats to siberian chipmunks (Eutamias sibiricus) with suprachiasmatic lesions. Neurosci Lett. 1991;123:77–81.CrossRefPubMed Saitoh Y, Matsui Y, Nihonmatsu I, Kawamura H. Cross-species transplantation of the suprachiasmatic nuclei from rats to siberian chipmunks (Eutamias sibiricus) with suprachiasmatic lesions. Neurosci Lett. 1991;123:77–81.CrossRefPubMed
41.
go back to reference Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247:975–8.CrossRefPubMed Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247:975–8.CrossRefPubMed
42.
go back to reference Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol. 2003;13:664–8.CrossRefPubMed Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol. 2003;13:664–8.CrossRefPubMed
43.
go back to reference Lehman MN, LeSauter J, Kim C, Berriman SJ, Tresco PA, Silver R. How do fetal grafts of the suprachiasmatic nucleus communicate with the host brain? Cell Transplant. 1995;4:75–81.CrossRefPubMed Lehman MN, LeSauter J, Kim C, Berriman SJ, Tresco PA, Silver R. How do fetal grafts of the suprachiasmatic nucleus communicate with the host brain? Cell Transplant. 1995;4:75–81.CrossRefPubMed
44.
go back to reference Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology. 1999;140:207–18.CrossRefPubMed Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology. 1999;140:207–18.CrossRefPubMed
45.
go back to reference Silver R, Lehman MN, Gibson M, Gladstone WR, Bittman EL. Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res. 1990;525:45–58.CrossRefPubMed Silver R, Lehman MN, Gibson M, Gladstone WR, Bittman EL. Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res. 1990;525:45–58.CrossRefPubMed
46.
go back to reference Foster RG, Hankins MW. Non-rod, non-cone photoreception in the vertebrates. Progress in Retinal and Eye Researech. 2002;21:507–27.CrossRef Foster RG, Hankins MW. Non-rod, non-cone photoreception in the vertebrates. Progress in Retinal and Eye Researech. 2002;21:507–27.CrossRef
47.
go back to reference Yamazaki S, Goto M, Menaker M. No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythm. 1999;14:197–201.CrossRef Yamazaki S, Goto M, Menaker M. No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythm. 1999;14:197–201.CrossRef
48.
go back to reference Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. 1991;169:39–50.CrossRefPubMed Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. 1991;169:39–50.CrossRefPubMed
49.
go back to reference Lucas RJ, Freedman MS, Muñoz M, Garcia-Fernández JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.CrossRefPubMed Lucas RJ, Freedman MS, Muñoz M, Garcia-Fernández JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.CrossRefPubMed
50.
go back to reference Foster RG, Argamaso S, Coieman S, Colwell CS, Lederman A, Provencio I. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythm. 1993;8:17–23.CrossRef Foster RG, Argamaso S, Coieman S, Colwell CS, Lederman A, Provencio I. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythm. 1993;8:17–23.CrossRef
51.
go back to reference Pickard GE, Turek FW, Lamperti AA, Silverman AJ. The effect of neonatally administered monosodium glutamate (MSG) on the development of retinofugal projections and entrainment of circadian locomotor activity. Behav Neural Biol. 1982;34:433–44.CrossRefPubMed Pickard GE, Turek FW, Lamperti AA, Silverman AJ. The effect of neonatally administered monosodium glutamate (MSG) on the development of retinofugal projections and entrainment of circadian locomotor activity. Behav Neural Biol. 1982;34:433–44.CrossRefPubMed
52.
go back to reference Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.CrossRefPubMed Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.CrossRefPubMed
53.
go back to reference Provencio I, Cooper HM, Foster RG. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol. 1998;395:417–39.CrossRefPubMed Provencio I, Cooper HM, Foster RG. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol. 1998;395:417–39.CrossRefPubMed
54.
go back to reference Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS One. 2016;11:1–23.CrossRef Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS One. 2016;11:1–23.CrossRef
55.
go back to reference Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 2016;4:1165.CrossRef Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 2016;4:1165.CrossRef
56.
57.
go back to reference Tanaka M, Ichitani Y, Okamura H, Tanaka Y, Ibata Y. The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull. 1993;31:637–40.CrossRefPubMed Tanaka M, Ichitani Y, Okamura H, Tanaka Y, Ibata Y. The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull. 1993;31:637–40.CrossRefPubMed
58.
go back to reference Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J. Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci. 1993;5:368–81.CrossRefPubMed Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J. Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci. 1993;5:368–81.CrossRefPubMed
59.
go back to reference Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, et al. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci. 1997;17:2637–44.CrossRefPubMedPubMedCentral Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, et al. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci. 1997;17:2637–44.CrossRefPubMedPubMedCentral
60.
go back to reference Kornhauser JM, Mayo KE, Takahashi JS. Light, immediate-early genes, and circadian rhythms. Behav Genet. 1996;26:221–40.CrossRefPubMed Kornhauser JM, Mayo KE, Takahashi JS. Light, immediate-early genes, and circadian rhythms. Behav Genet. 1996;26:221–40.CrossRefPubMed
61.
go back to reference Yasufumi S, Kouiju T, Yamamoto S, Takekida S, Yan L, Tei H, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer transcript. Cell. 1997;91:1043–53.CrossRef Yasufumi S, Kouiju T, Yamamoto S, Takekida S, Yan L, Tei H, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer transcript. Cell. 1997;91:1043–53.CrossRef
62.
go back to reference Rusak B, Boulos Z. Pathways for photic entrainment of mammalian circadian rhythms. Photochem Photobiol. 1981;34:267–73.CrossRefPubMed Rusak B, Boulos Z. Pathways for photic entrainment of mammalian circadian rhythms. Photochem Photobiol. 1981;34:267–73.CrossRefPubMed
63.
go back to reference Rusak B. Involvement of the primary optic tracts in mediation of light effects on hamster circadian rhythms. J Comp Physiol. 1977;118:165–72.CrossRef Rusak B. Involvement of the primary optic tracts in mediation of light effects on hamster circadian rhythms. J Comp Physiol. 1977;118:165–72.CrossRef
64.
go back to reference Moore RY, Card JP. Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol. 1994;344:403–30.CrossRefPubMed Moore RY, Card JP. Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol. 1994;344:403–30.CrossRefPubMed
65.
go back to reference Harrington ME, Nance DM, Rusak B. Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Res Bull. 1985;15:465–72.CrossRefPubMed Harrington ME, Nance DM, Rusak B. Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Res Bull. 1985;15:465–72.CrossRefPubMed
66.
go back to reference Freeman DA, Dhandapanic KM, Goldman BD. The thalamic intergeniculate leaflet modulates photoperiod responsiveness in siberian hamsters. 2004; 1028:31–38. Freeman DA, Dhandapanic KM, Goldman BD. The thalamic intergeniculate leaflet modulates photoperiod responsiveness in siberian hamsters. 2004; 1028:31–38.
67.
68.
go back to reference Leander P, Vrang N, Moller M. Neuronal projections from the mesencephalic raphe neucleus complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus). J Comp Neurol. 1998;399:73–93.CrossRefPubMed Leander P, Vrang N, Moller M. Neuronal projections from the mesencephalic raphe neucleus complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus). J Comp Neurol. 1998;399:73–93.CrossRefPubMed
69.
go back to reference Meyer-Bernstein EL, Morin LP. Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci. 1996;16:2097–111.CrossRefPubMedPubMedCentral Meyer-Bernstein EL, Morin LP. Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci. 1996;16:2097–111.CrossRefPubMedPubMedCentral
70.
go back to reference Moga MM, Moore RY. Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol. 1997;389:508–34.CrossRefPubMed Moga MM, Moore RY. Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol. 1997;389:508–34.CrossRefPubMed
71.
go back to reference Allen G, Rappe J, Earnest DJ, Cassone VM. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J Neurosci. 2001;21:7937–43.CrossRefPubMedPubMedCentral Allen G, Rappe J, Earnest DJ, Cassone VM. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J Neurosci. 2001;21:7937–43.CrossRefPubMedPubMedCentral
72.
go back to reference Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science. 2001;294:2511–5.CrossRefPubMed Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science. 2001;294:2511–5.CrossRefPubMed
73.
go back to reference Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature. 2002;417:405–10.CrossRefPubMed Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature. 2002;417:405–10.CrossRefPubMed
74.
go back to reference Bujis RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci. 2001;2:521–6.CrossRef Bujis RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci. 2001;2:521–6.CrossRef
75.
go back to reference Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythm. 2006;21:458–69.CrossRef Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythm. 2006;21:458–69.CrossRef
76.
go back to reference Leak RK, Moore RY. Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol. 2001;433:312–34.CrossRefPubMed Leak RK, Moore RY. Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol. 2001;433:312–34.CrossRefPubMed
77.
go back to reference La Fleur SE, Kalsbeek A, Wortel J, Buijs RM. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 2000;871:50–6.CrossRefPubMed La Fleur SE, Kalsbeek A, Wortel J, Buijs RM. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 2000;871:50–6.CrossRefPubMed
78.
go back to reference Buijs RM, Chun SJ, Niijima A, Romijin HJ, Nagai K. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 2001;431:405–23.CrossRefPubMed Buijs RM, Chun SJ, Niijima A, Romijin HJ, Nagai K. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 2001;431:405–23.CrossRefPubMed
79.
go back to reference Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology. 2000;141:3832–41.CrossRefPubMed Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology. 2000;141:3832–41.CrossRefPubMed
80.
go back to reference Buijs RM, Wortel J, van Heerikhuize JJ, Feenstra MGP, Ter Horst GJ, Romijn HJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci. 1999;11:1535–44.CrossRefPubMed Buijs RM, Wortel J, van Heerikhuize JJ, Feenstra MGP, Ter Horst GJ, Romijn HJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci. 1999;11:1535–44.CrossRefPubMed
81.
go back to reference Gerendai I, Tóth IE, Boldogköi Z, Medveczky I, Halász B. CNS structures presumably involved in vagal control of ovarian function. J Auton Nerv Syst. 2000;80:40–5.CrossRefPubMed Gerendai I, Tóth IE, Boldogköi Z, Medveczky I, Halász B. CNS structures presumably involved in vagal control of ovarian function. J Auton Nerv Syst. 2000;80:40–5.CrossRefPubMed
82.
go back to reference Lilley TR, Wotus C, Taylor D, Lee JM, de la Iglesia HO. Circadian regulation of cortisol release in behaviorally split golden hamsters. Endocrinology. 2012;153:732–8.CrossRefPubMed Lilley TR, Wotus C, Taylor D, Lee JM, de la Iglesia HO. Circadian regulation of cortisol release in behaviorally split golden hamsters. Endocrinology. 2012;153:732–8.CrossRefPubMed
83.
84.
go back to reference Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289:2344–7.CrossRefPubMed Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289:2344–7.CrossRefPubMed
86.
go back to reference Herbison AE. Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Plant TM, Zeleznik AJ, editors. Physiology of Reproduction. Academic Press; 2014 pp. 399–467. Herbison AE. Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Plant TM, Zeleznik AJ, editors. Physiology of Reproduction. Academic Press; 2014 pp. 399–467.
87.
go back to reference Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci U S A. 2006;103:2410–5.CrossRefPubMedPubMedCentral Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci U S A. 2006;103:2410–5.CrossRefPubMedPubMedCentral
88.
go back to reference Gibson EM, Humber SA, Jain S, Williams WP, Zhao S, Bentley GE, et al. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology. 2008;149:4958–69.CrossRefPubMedPubMedCentral Gibson EM, Humber SA, Jain S, Williams WP, Zhao S, Bentley GE, et al. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology. 2008;149:4958–69.CrossRefPubMedPubMedCentral
89.
go back to reference Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ. Effect of RF-amide-related Peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology. 2009;150:5549–56.CrossRefPubMed Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ. Effect of RF-amide-related Peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology. 2009;150:5549–56.CrossRefPubMed
90.
go back to reference Yano T, Iijima N, Kakihara K, Hinuma S, Tanaka M, Ibata Y. Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res. 2003;982:156–67.CrossRefPubMed Yano T, Iijima N, Kakihara K, Hinuma S, Tanaka M, Ibata Y. Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res. 2003;982:156–67.CrossRefPubMed
91.
go back to reference Rizwan MZ, Poling MC, Corr M, Cornes PA, Augustine RA, Quennell JH, et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology. 2012;153:3770–9.CrossRefPubMed Rizwan MZ, Poling MC, Corr M, Cornes PA, Augustine RA, Quennell JH, et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology. 2012;153:3770–9.CrossRefPubMed
92.
go back to reference Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. 2009;150:2799–804.CrossRefPubMed Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. 2009;150:2799–804.CrossRefPubMed
93.
go back to reference Hickok JR, Tischkau SA. In vivo circadian rhythms in gonadotropin-releasing hormone neurons. Neuroendocrinology. 2010;91:110–20.CrossRefPubMed Hickok JR, Tischkau SA. In vivo circadian rhythms in gonadotropin-releasing hormone neurons. Neuroendocrinology. 2010;91:110–20.CrossRefPubMed
94.
95.
go back to reference Bose S, Boockfor FR. Episodes of prolactin gene expression in gh3 cells are dependent on selective promoter binding of multiple circadian elements. Endocrinology. 2010;151:2287–96.CrossRefPubMedPubMedCentral Bose S, Boockfor FR. Episodes of prolactin gene expression in gh3 cells are dependent on selective promoter binding of multiple circadian elements. Endocrinology. 2010;151:2287–96.CrossRefPubMedPubMedCentral
96.
go back to reference Leclerc GM, Boockfor FR. Pulses of prolactin promoter activity depend on a noncanonocal E-box that can bind the circadian proteins CLOCK and BMAL1. Endocrinology. 2005;146:2782–90.CrossRefPubMed Leclerc GM, Boockfor FR. Pulses of prolactin promoter activity depend on a noncanonocal E-box that can bind the circadian proteins CLOCK and BMAL1. Endocrinology. 2005;146:2782–90.CrossRefPubMed
97.
go back to reference Olcese J, Sikes HE, Resuehr D. Induction of PER1 mRNA expression in immortalized gonadotropes by gonadotropin-releasing hormone (GnRH): involvement of protein kinase C and MAP kinase signaling. Chronobiol Int. 2006;23:143–50.CrossRefPubMed Olcese J, Sikes HE, Resuehr D. Induction of PER1 mRNA expression in immortalized gonadotropes by gonadotropin-releasing hormone (GnRH): involvement of protein kinase C and MAP kinase signaling. Chronobiol Int. 2006;23:143–50.CrossRefPubMed
98.
go back to reference Resuehr D, Wildemann U, Sikes H, Olcese J. E-box regulation of gonadotropin-releasing hormone (GnRH) receptor expression in immortalized gonadotrope cells. Mol Cell Endocrinol. 2007;278:36–43.CrossRefPubMed Resuehr D, Wildemann U, Sikes H, Olcese J. E-box regulation of gonadotropin-releasing hormone (GnRH) receptor expression in immortalized gonadotrope cells. Mol Cell Endocrinol. 2007;278:36–43.CrossRefPubMed
99.
go back to reference Aiyer MS, Fink G, Greig F. Changes in the sensitivity of the pituitary gland to luteinizing hormone releasing factor during the oestrous cycle of the rat. J Endocrinol. 1974;60:47–64.CrossRefPubMed Aiyer MS, Fink G, Greig F. Changes in the sensitivity of the pituitary gland to luteinizing hormone releasing factor during the oestrous cycle of the rat. J Endocrinol. 1974;60:47–64.CrossRefPubMed
100.
go back to reference Clayton RN. Gonadotropin-releasing hormone modulation of its own pituitary receptors: evidence for biphasic regulation. Endocrinology. 1982;111:152–61.CrossRefPubMed Clayton RN. Gonadotropin-releasing hormone modulation of its own pituitary receptors: evidence for biphasic regulation. Endocrinology. 1982;111:152–61.CrossRefPubMed
101.
go back to reference Krsmanovic LZ, Martinez-Fuentes AJ, Arora KK, Mores N, Tomić M, Stojilkovic SS, et al. Local regulation of gonadotroph function by pituitary gonadotropin-releasing hormone. Endocrinology. 2000;141:1187–95.CrossRefPubMed Krsmanovic LZ, Martinez-Fuentes AJ, Arora KK, Mores N, Tomić M, Stojilkovic SS, et al. Local regulation of gonadotroph function by pituitary gonadotropin-releasing hormone. Endocrinology. 2000;141:1187–95.CrossRefPubMed
102.
go back to reference Karman BN, Tischkau SA. Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol Reprod. 2006;75:624–32.CrossRefPubMed Karman BN, Tischkau SA. Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol Reprod. 2006;75:624–32.CrossRefPubMed
103.
go back to reference Fahrenkrug J, Georg B, Hannibal J, Hidersson P, Gräs S. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology. 2006;147:3769–76.CrossRefPubMed Fahrenkrug J, Georg B, Hannibal J, Hidersson P, Gräs S. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology. 2006;147:3769–76.CrossRefPubMed
104.
go back to reference Nakamura TJ, Sellix MT, Kudo T, Nakao N, Yoshimura T, Ebihara S, et al. Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids. 2010;75:203–12.CrossRefPubMedPubMedCentral Nakamura TJ, Sellix MT, Kudo T, Nakao N, Yoshimura T, Ebihara S, et al. Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids. 2010;75:203–12.CrossRefPubMedPubMedCentral
105.
go back to reference He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA. The disruption of circadian clockwork in differentiating cells from rat reproductive tissues as identified by in vitro real-time monitoring system. J Endocrinol. 2007;193:413–20.CrossRefPubMed He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA. The disruption of circadian clockwork in differentiating cells from rat reproductive tissues as identified by in vitro real-time monitoring system. J Endocrinol. 2007;193:413–20.CrossRefPubMed
106.
go back to reference He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA. Gonadotropic regulation of circadian clockwork in rat granulosa cells. Mol Cell Biochem. 2007;302:111–8.CrossRefPubMed He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA. Gonadotropic regulation of circadian clockwork in rat granulosa cells. Mol Cell Biochem. 2007;302:111–8.CrossRefPubMed
107.
go back to reference Johnson MH, Lim A, Fernando D, Day ML. Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse. Reprod BioMed Online. 2002;4:140–5.CrossRefPubMed Johnson MH, Lim A, Fernando D, Day ML. Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse. Reprod BioMed Online. 2002;4:140–5.CrossRefPubMed
108.
go back to reference Kennaway DJ, Varcoe TJ, Mau VJ. Rhythmic expression of clock and clock-controlled genes in the rat oviduct. Mol Hum Reprod. 2003;9:503–7.CrossRefPubMed Kennaway DJ, Varcoe TJ, Mau VJ. Rhythmic expression of clock and clock-controlled genes in the rat oviduct. Mol Hum Reprod. 2003;9:503–7.CrossRefPubMed
109.
go back to reference Everett JW, Sawyer CH. A 24-hour periodicity in the "LH-release apparatus" of female rats, disclosed by barbiturate sedation. Endocrinology. 1950;47:198–218.CrossRefPubMed Everett JW, Sawyer CH. A 24-hour periodicity in the "LH-release apparatus" of female rats, disclosed by barbiturate sedation. Endocrinology. 1950;47:198–218.CrossRefPubMed
110.
go back to reference Everett JW, Sawyer CH, Markee JE. A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat. Endocrinology. 1949;44:234–50.CrossRefPubMed Everett JW, Sawyer CH, Markee JE. A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat. Endocrinology. 1949;44:234–50.CrossRefPubMed
111.
go back to reference Caligaris L, Astrada JJ, Taleisnik S. Release of luteinizing hormone induced by estrogen injection into ovariectomized rats. Endocrinology. 1971;88:810–5.CrossRefPubMed Caligaris L, Astrada JJ, Taleisnik S. Release of luteinizing hormone induced by estrogen injection into ovariectomized rats. Endocrinology. 1971;88:810–5.CrossRefPubMed
112.
go back to reference Stetson MH, Watson-Whitmyre M, Dipinto MN, Smith SG. Daily luteinizing hormone release in ovariectomized hamsters: effect of barbiturate blockade. Biol Reprod. 1981;24:139–44.CrossRefPubMed Stetson MH, Watson-Whitmyre M, Dipinto MN, Smith SG. Daily luteinizing hormone release in ovariectomized hamsters: effect of barbiturate blockade. Biol Reprod. 1981;24:139–44.CrossRefPubMed
113.
go back to reference Henderson SR, Baker C, Fink G. Effect of oestradiol-17β exposure on the spontaneous secretion of gonadotropins in chronically gonadectomized rats. J Endocrinol. 1977;73:455–62.CrossRefPubMed Henderson SR, Baker C, Fink G. Effect of oestradiol-17β exposure on the spontaneous secretion of gonadotropins in chronically gonadectomized rats. J Endocrinol. 1977;73:455–62.CrossRefPubMed
114.
go back to reference Legan SJ, Coon GA, Karsch FJ. Role of estrogen as initiator of daily LH surges in the ovariectomized rat. Endocrinology. 1975;96:50–6.CrossRefPubMed Legan SJ, Coon GA, Karsch FJ. Role of estrogen as initiator of daily LH surges in the ovariectomized rat. Endocrinology. 1975;96:50–6.CrossRefPubMed
115.
116.
go back to reference Ramirez VD, Sawyer CH. Differential dynamic responses of plasma LH and FSH to ovariectomy and to a single injection of estrogen in the rat. Endocrinology. 1974;94:987–93.CrossRefPubMed Ramirez VD, Sawyer CH. Differential dynamic responses of plasma LH and FSH to ovariectomy and to a single injection of estrogen in the rat. Endocrinology. 1974;94:987–93.CrossRefPubMed
117.
go back to reference Sarkar DK, Chiappa SA, Fink G, Sherwood NM. Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature. 1976;264:461–3.CrossRefPubMed Sarkar DK, Chiappa SA, Fink G, Sherwood NM. Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature. 1976;264:461–3.CrossRefPubMed
118.
go back to reference Colombo JA, Phelps CP. Prolactin and luteinizing hormone release after diencephalic lesions and stimulation. Brain Res Bull. 1981;6:243–9.CrossRefPubMed Colombo JA, Phelps CP. Prolactin and luteinizing hormone release after diencephalic lesions and stimulation. Brain Res Bull. 1981;6:243–9.CrossRefPubMed
119.
go back to reference Hoffman GE, Gibbs FP. LHRH pathways in the rat brain: “deafferentation” spares a sub-chiasmatic LHRH projection to the median eminence. Neuroscience. 1982;7:1979–93.CrossRefPubMed Hoffman GE, Gibbs FP. LHRH pathways in the rat brain: “deafferentation” spares a sub-chiasmatic LHRH projection to the median eminence. Neuroscience. 1982;7:1979–93.CrossRefPubMed
120.
go back to reference Kawakami M, Terasawa E. Acute effect of neural deafferentation on timing of gonadotropin secretion before proestrus in the female rat. Endocrinologia Japonica. 1972;19:449–59.CrossRefPubMed Kawakami M, Terasawa E. Acute effect of neural deafferentation on timing of gonadotropin secretion before proestrus in the female rat. Endocrinologia Japonica. 1972;19:449–59.CrossRefPubMed
121.
go back to reference Phelps CP, Krieg RJ, Sawyer CH. Spontaneous and electrochemically stimulated changes in plasma LH in the female rat following hypothalamic deafferentation. Brain Res. 1976;101:239–49.CrossRefPubMed Phelps CP, Krieg RJ, Sawyer CH. Spontaneous and electrochemically stimulated changes in plasma LH in the female rat following hypothalamic deafferentation. Brain Res. 1976;101:239–49.CrossRefPubMed
122.
go back to reference Brown-Grant K, Raisman G. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proceedings of the Royal Society of Londres B. 1977;198:279–96.CrossRef Brown-Grant K, Raisman G. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proceedings of the Royal Society of Londres B. 1977;198:279–96.CrossRef
123.
go back to reference Raisman G, Brown-Grant K. The “suprachiasmatic syndrome”: endocrine and behavioral abnormalities following lesions of the suprachiasmatic nuclei in the female rat. Proceedings of the Royal Society of Londres B. 1977;198:297–314.CrossRef Raisman G, Brown-Grant K. The “suprachiasmatic syndrome”: endocrine and behavioral abnormalities following lesions of the suprachiasmatic nuclei in the female rat. Proceedings of the Royal Society of Londres B. 1977;198:297–314.CrossRef
124.
go back to reference Gray GD, Sodersten P, Tallentire D, Davidson JM. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology. 1978;25:174–91.CrossRefPubMed Gray GD, Sodersten P, Tallentire D, Davidson JM. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology. 1978;25:174–91.CrossRefPubMed
125.
go back to reference Kawakami M, Arita J, Yoshioka E. Loss of estrogen-induced daily surges of prolactin and gonadotropins by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology. 1980;106:1087–92.CrossRefPubMed Kawakami M, Arita J, Yoshioka E. Loss of estrogen-induced daily surges of prolactin and gonadotropins by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology. 1980;106:1087–92.CrossRefPubMed
126.
go back to reference Wiegand SJ, Terasawa E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology. 1982;34:395–404.CrossRefPubMed Wiegand SJ, Terasawa E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology. 1982;34:395–404.CrossRefPubMed
127.
go back to reference Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology. 2009;150:3664–71.CrossRefPubMedPubMedCentral Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology. 2009;150:3664–71.CrossRefPubMedPubMedCentral
128.
go back to reference Seegal RF, Goldman BD. Effects of photoperiod on cyclicity and serum gonadotropins in the Syrian hamster. Biol Reprod. 1975;12:223–31.CrossRefPubMed Seegal RF, Goldman BD. Effects of photoperiod on cyclicity and serum gonadotropins in the Syrian hamster. Biol Reprod. 1975;12:223–31.CrossRefPubMed
129.
go back to reference Lucas RJ, Stirland JA, Darrow JM, Menaker M, Loudon AS. Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology. 1999;140:758–64.CrossRefPubMed Lucas RJ, Stirland JA, Darrow JM, Menaker M, Loudon AS. Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology. 1999;140:758–64.CrossRefPubMed
130.
go back to reference de la Iglesia HO, Meyer J, Schwartz WJ. Lateralization of circadian pacemaker output: activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci. 2003;23:7412–4.CrossRefPubMedPubMedCentral de la Iglesia HO, Meyer J, Schwartz WJ. Lateralization of circadian pacemaker output: activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci. 2003;23:7412–4.CrossRefPubMedPubMedCentral
131.
go back to reference Swann JM, Turek FW. Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science. 1985;228:898–900.CrossRefPubMed Swann JM, Turek FW. Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science. 1985;228:898–900.CrossRefPubMed
132.
go back to reference van der Beek EM, Horvath TL, Wiegant VM, Van der Hurk R, Buijs RM. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol. 1997;384:569–79.CrossRefPubMed van der Beek EM, Horvath TL, Wiegant VM, Van der Hurk R, Buijs RM. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol. 1997;384:569–79.CrossRefPubMed
133.
go back to reference van der Beek EM, van Oudheusden HJ, Buijs RM, van der Donk HA, van der Hurk R, Wiegant VM. Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology. 1994;134:2636–44.CrossRefPubMed van der Beek EM, van Oudheusden HJ, Buijs RM, van der Donk HA, van der Hurk R, Wiegant VM. Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology. 1994;134:2636–44.CrossRefPubMed
134.
go back to reference van der Beek EM, Wiegant VM, van der Donk HA, van der Hurk R, Buijs RM. Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotropin-releasing hormone neurons in the female rat. J Neuroendocrinol. 1993;5:137–44.CrossRefPubMed van der Beek EM, Wiegant VM, van der Donk HA, van der Hurk R, Buijs RM. Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotropin-releasing hormone neurons in the female rat. J Neuroendocrinol. 1993;5:137–44.CrossRefPubMed
135.
go back to reference van der Beek EM, Wiegant VM, van Oudheusden HJ, van der Donk HA, van den Hurk R, Buijs RM. Synaptic contacts between gonadotropin-releasing hormone-containing fibers and neurons in the suprachiasmatic nucleus and perichiasmatic area: an anatomical substrate for feedback regulation? Brain Res. 1997;755:101–11.CrossRefPubMed van der Beek EM, Wiegant VM, van Oudheusden HJ, van der Donk HA, van den Hurk R, Buijs RM. Synaptic contacts between gonadotropin-releasing hormone-containing fibers and neurons in the suprachiasmatic nucleus and perichiasmatic area: an anatomical substrate for feedback regulation? Brain Res. 1997;755:101–11.CrossRefPubMed
136.
go back to reference Lasaga M, Debeljuk L, Afione S, Torres-Aleman I, Duvialanski B. Effects of passive immunization against vasoactive intestinal peptide on serum prolactin and LH levels. Neuroendocrinology. 1989;49:574–9.CrossRefPubMed Lasaga M, Debeljuk L, Afione S, Torres-Aleman I, Duvialanski B. Effects of passive immunization against vasoactive intestinal peptide on serum prolactin and LH levels. Neuroendocrinology. 1989;49:574–9.CrossRefPubMed
137.
go back to reference Palm IF, van der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Res. 2001;901:109–16.CrossRefPubMed Palm IF, van der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Res. 2001;901:109–16.CrossRefPubMed
138.
go back to reference Piet R, Fraissenon A, Boehm U, Herbison AE. Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J Neurosci. 2015;35:6881–92.CrossRefPubMedPubMedCentral Piet R, Fraissenon A, Boehm U, Herbison AE. Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J Neurosci. 2015;35:6881–92.CrossRefPubMedPubMedCentral
139.
go back to reference Samson WK, Burton KP, Reeves JP, McCann SM. Vasoactive intestinal peptide stimulates luteinizing hormone-releasing hormone release from the median eminence synaptosomes. Regul Pept. 1981;2:253–64.CrossRefPubMed Samson WK, Burton KP, Reeves JP, McCann SM. Vasoactive intestinal peptide stimulates luteinizing hormone-releasing hormone release from the median eminence synaptosomes. Regul Pept. 1981;2:253–64.CrossRefPubMed
140.
go back to reference van der Beek EM, Swarts HJM, Wiegant VM. Central administration of antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin surges in ovariectomized, estrogen-treated rats. Neuroendocrinology. 1999;69:227–37.CrossRefPubMed van der Beek EM, Swarts HJM, Wiegant VM. Central administration of antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin surges in ovariectomized, estrogen-treated rats. Neuroendocrinology. 1999;69:227–37.CrossRefPubMed
141.
go back to reference Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and gated GnRH response mediate preovulatory luteinizing hormone surge. Endocrinology. 2011;152:595–606.CrossRefPubMed Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and gated GnRH response mediate preovulatory luteinizing hormone surge. Endocrinology. 2011;152:595–606.CrossRefPubMed
142.
go back to reference Akema T, Hashimoto R, Kimura F. Preoptic injections of VIP, but not secretin or PHI, inhibits LH and stimulates prolactin secretion in the ovariectomized rat. Brain Res. 1988;441:367–70.CrossRefPubMed Akema T, Hashimoto R, Kimura F. Preoptic injections of VIP, but not secretin or PHI, inhibits LH and stimulates prolactin secretion in the ovariectomized rat. Brain Res. 1988;441:367–70.CrossRefPubMed
143.
go back to reference Alexander MJ, Clifton DK, Steiner R. Vasoactive intestinal polypeptide effects a central inhibition of pulsatile luteinizing hormone secretion in ovariectomized rats. Endocrinology. 1985;117:2134–9.CrossRefPubMed Alexander MJ, Clifton DK, Steiner R. Vasoactive intestinal polypeptide effects a central inhibition of pulsatile luteinizing hormone secretion in ovariectomized rats. Endocrinology. 1985;117:2134–9.CrossRefPubMed
144.
go back to reference Kimura F, Mitsugi N, Arita J, Akema T, Yoshida K. Effects of preoptic injections of gastrin. Cholecystokinin, secretin, vasoactive intestinal peptide and PHI on the secretion of luteinizing hormone and prolactin in ovariectomized estrogen-primed rats. Brain Res. 1987;410:315–22.CrossRefPubMed Kimura F, Mitsugi N, Arita J, Akema T, Yoshida K. Effects of preoptic injections of gastrin. Cholecystokinin, secretin, vasoactive intestinal peptide and PHI on the secretion of luteinizing hormone and prolactin in ovariectomized estrogen-primed rats. Brain Res. 1987;410:315–22.CrossRefPubMed
145.
go back to reference Herbison AE, Pape JR. New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrinol. 2001;22:292–308.CrossRefPubMed Herbison AE, Pape JR. New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrinol. 2001;22:292–308.CrossRefPubMed
146.
go back to reference Herbison AE, Theodosius DT. Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience. 1992;50:283–98.CrossRefPubMed Herbison AE, Theodosius DT. Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience. 1992;50:283–98.CrossRefPubMed
147.
go back to reference Hrabovszky E, Kallo I, Szlavik N, Keller E, Merchenthaler I, Liposits Z. Gonadotropin-releasing hormone neurons express estrogen receptors-β. J Clin Endocrinol Metab. 2007;92:2827–30.CrossRefPubMed Hrabovszky E, Kallo I, Szlavik N, Keller E, Merchenthaler I, Liposits Z. Gonadotropin-releasing hormone neurons express estrogen receptors-β. J Clin Endocrinol Metab. 2007;92:2827–30.CrossRefPubMed
148.
go back to reference Merchenthaler I, Lane MV, Numan S, Dellovade TL. 2004. Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocutochemical analyses. J Comp Neurol. 2004;473:270–91.CrossRefPubMed Merchenthaler I, Lane MV, Numan S, Dellovade TL. 2004. Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocutochemical analyses. J Comp Neurol. 2004;473:270–91.CrossRefPubMed
149.
go back to reference Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology. 2003;144:2055–67.CrossRefPubMed Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology. 2003;144:2055–67.CrossRefPubMed
150.
go back to reference Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and –beta mRNA in the rat central nervous system. J Comp Neurol. 1997;388:507–25.CrossRefPubMed Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and –beta mRNA in the rat central nervous system. J Comp Neurol. 1997;388:507–25.CrossRefPubMed
151.
go back to reference Roa J, Vigo E, Castellano JM, Gaytan F, Navarro VM, Aguilar E, et al. Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology. 2008;149:1627–37.CrossRefPubMed Roa J, Vigo E, Castellano JM, Gaytan F, Navarro VM, Aguilar E, et al. Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology. 2008;149:1627–37.CrossRefPubMed
152.
go back to reference Gottsch ML, Navarro VM, Zhao Z, Glidewell-Kenney C, Weiss J, Jameson JL, et al. Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci Off J Soc Neurosci. 2009;29:9390–5.CrossRef Gottsch ML, Navarro VM, Zhao Z, Glidewell-Kenney C, Weiss J, Jameson JL, et al. Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci Off J Soc Neurosci. 2009;29:9390–5.CrossRef
153.
go back to reference de la Iglesia HO, Blaustein JD, Bittman EL. The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport. 1995;6:1715–22.CrossRefPubMed de la Iglesia HO, Blaustein JD, Bittman EL. The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport. 1995;6:1715–22.CrossRefPubMed
154.
go back to reference de la Iglesia HO, Blaustein JD, Bittman EL. Oestrogen receptor-alpha-immunoreactive neurons project to the suprachiasmatic nucleus of the female Syrian hamster. J Neuroendocrinol. 1999;11:481–90.CrossRef de la Iglesia HO, Blaustein JD, Bittman EL. Oestrogen receptor-alpha-immunoreactive neurons project to the suprachiasmatic nucleus of the female Syrian hamster. J Neuroendocrinol. 1999;11:481–90.CrossRef
155.
go back to reference Hahn JD, Coen CW. Comparative study of the sources of neuronal projections to the site of gonadotrophin-releasing hormone perikarya and to the anteroventral periventricular nucleus in female rats. J Comp Neurol. 2006;494:190–214.CrossRefPubMed Hahn JD, Coen CW. Comparative study of the sources of neuronal projections to the site of gonadotrophin-releasing hormone perikarya and to the anteroventral periventricular nucleus in female rats. J Comp Neurol. 2006;494:190–214.CrossRefPubMed
156.
go back to reference Kalló I, Vida B, Bardóczi Z, Szilvásy-Szabo A, Rabi F, Molnár T, et al. Gonadotropin-releasing hormone neurons innervate kisspeptin neurons in the female mouse brain. Neuroendocrinology. 2013;98:281–9.CrossRefPubMed Kalló I, Vida B, Bardóczi Z, Szilvásy-Szabo A, Rabi F, Molnár T, et al. Gonadotropin-releasing hormone neurons innervate kisspeptin neurons in the female mouse brain. Neuroendocrinology. 2013;98:281–9.CrossRefPubMed
157.
go back to reference Saeb-Parsy K, Lombardelli S, Khan FZ, McDowal K, Au-Yong IT, Dyball RE. Neural connections of hypothalamic neuroendocrine nuclei in the rat. J Neuroendocrinol. 2000;12:635–48.CrossRefPubMed Saeb-Parsy K, Lombardelli S, Khan FZ, McDowal K, Au-Yong IT, Dyball RE. Neural connections of hypothalamic neuroendocrine nuclei in the rat. J Neuroendocrinol. 2000;12:635–48.CrossRefPubMed
158.
go back to reference Simodian SX, Spratt DP, Herbison AE. Identification and characterization of estrogen receptor α-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. J Comp Neurol. 1999;411:346–58.CrossRef Simodian SX, Spratt DP, Herbison AE. Identification and characterization of estrogen receptor α-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. J Comp Neurol. 1999;411:346–58.CrossRef
159.
go back to reference Smarr BL, Gile JJ, de la Iglesia HO. Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in the female rats: possible role as an integrator for circadian and ovarian signals timing the luteinizing hormone surge. J Neuroendocrinol. 2013;25:1273–9.CrossRefPubMedPubMedCentral Smarr BL, Gile JJ, de la Iglesia HO. Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in the female rats: possible role as an integrator for circadian and ovarian signals timing the luteinizing hormone surge. J Neuroendocrinol. 2013;25:1273–9.CrossRefPubMedPubMedCentral
160.
go back to reference Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology. 2006;147:283–94.CrossRefPubMed Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology. 2006;147:283–94.CrossRefPubMed
161.
go back to reference Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci. 2006;26:6687–94.CrossRefPubMedPubMedCentral Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci. 2006;26:6687–94.CrossRefPubMedPubMedCentral
162.
go back to reference Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146:3686–92.CrossRefPubMed Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146:3686–92.CrossRefPubMed
163.
go back to reference Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in the estrogen positive feedback action on luteinizing hormone release in female rats. The Journal of Reproduction and Development. 2007;53:367–78.CrossRefPubMed Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in the estrogen positive feedback action on luteinizing hormone release in female rats. The Journal of Reproduction and Development. 2007;53:367–78.CrossRefPubMed
164.
go back to reference Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology. 2005;146:4431–6.CrossRefPubMed Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology. 2005;146:4431–6.CrossRefPubMed
165.
go back to reference Beale KE, Kinsey-Jones JS, Gardiner JV, Harrison EK, Thompson EL, Hu MH, et al. Franks S bloom SR, O’Bryne KT, murphy KG. The physiological role of arcuate kisspeptin neurons in the control of reproductive function in female rats. Endocrinology. 2014;155:1091–8.CrossRefPubMed Beale KE, Kinsey-Jones JS, Gardiner JV, Harrison EK, Thompson EL, Hu MH, et al. Franks S bloom SR, O’Bryne KT, murphy KG. The physiological role of arcuate kisspeptin neurons in the control of reproductive function in female rats. Endocrinology. 2014;155:1091–8.CrossRefPubMed
167.
go back to reference Ohkura S, Uenoyama Y, Yamada S, Homma T, Takase K, Inoue N, et al. Physiological role of metastin/kisspeptin in regulating gonadotropin-releasing hormone (GnRH) secretion in female rats. Peptides. 2009;30:49–56.CrossRefPubMed Ohkura S, Uenoyama Y, Yamada S, Homma T, Takase K, Inoue N, et al. Physiological role of metastin/kisspeptin in regulating gonadotropin-releasing hormone (GnRH) secretion in female rats. Peptides. 2009;30:49–56.CrossRefPubMed
168.
go back to reference Xu Z, Kaga S, Mochiduki A, Tsubomizu J, Adachi S, Sakai T, et al. Immunocutochemical localization of kisspeptin neurons in the rat forebrain with special reference to sexual dimorphism and interaction with GnRH neurons. Endocr J. 2012;59:161–71.CrossRefPubMed Xu Z, Kaga S, Mochiduki A, Tsubomizu J, Adachi S, Sakai T, et al. Immunocutochemical localization of kisspeptin neurons in the rat forebrain with special reference to sexual dimorphism and interaction with GnRH neurons. Endocr J. 2012;59:161–71.CrossRefPubMed
169.
go back to reference Le WW, Berghorn KA, Rassnick S, Hoffman GE. Periventricular preoptica area neurons coactivated with luteinizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology. 1999;140:510–9.CrossRefPubMed Le WW, Berghorn KA, Rassnick S, Hoffman GE. Periventricular preoptica area neurons coactivated with luteinizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology. 1999;140:510–9.CrossRefPubMed
170.
go back to reference Smith JT, Clifton DK, Steiner RA. Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction. 131(4):623–30. Smith JT, Clifton DK, Steiner RA. Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction. 131(4):623–30.
171.
go back to reference Barbacka-Surowiak G, Surowiak J, Stoklosowa S. The involvement of the suprachiasmatic nuclei in the regulation of estrous cycles in rodents. Reprod Biol. 2003;3(2006):99–129.PubMed Barbacka-Surowiak G, Surowiak J, Stoklosowa S. The involvement of the suprachiasmatic nuclei in the regulation of estrous cycles in rodents. Reprod Biol. 2003;3(2006):99–129.PubMed
172.
go back to reference Russo KA, La JL, Stephens SB, Poling MC, Padgaonkar NA, Jennings KJ. Circadian control of the female reproductive axis through gated responsiveness of the RFRP-3 system to VIP signaling. Endocrinology. 2015;156:2609–18.CrossRef Russo KA, La JL, Stephens SB, Poling MC, Padgaonkar NA, Jennings KJ. Circadian control of the female reproductive axis through gated responsiveness of the RFRP-3 system to VIP signaling. Endocrinology. 2015;156:2609–18.CrossRef
173.
go back to reference Beattie CW, Schwartz NB. Blockade of the proestrous LH surge in cyclic rats by administration of barbiturates on diestrus. Proc Soc Exp Biol Med. 1973;142:933–5.CrossRefPubMed Beattie CW, Schwartz NB. Blockade of the proestrous LH surge in cyclic rats by administration of barbiturates on diestrus. Proc Soc Exp Biol Med. 1973;142:933–5.CrossRefPubMed
174.
go back to reference Schwartz NB, Lawton IE. Effects of barbiturate injection on the day before proestrous in the rat. Neuroendocrinology. 1968;3:9–17.CrossRef Schwartz NB, Lawton IE. Effects of barbiturate injection on the day before proestrous in the rat. Neuroendocrinology. 1968;3:9–17.CrossRef
175.
go back to reference Domínguez R, Smith ER. Barbiturate blockade of ovulation on days other than proestrous in the rat. Neuroendocrinology. 1974;14:212–23.CrossRefPubMed Domínguez R, Smith ER. Barbiturate blockade of ovulation on days other than proestrous in the rat. Neuroendocrinology. 1974;14:212–23.CrossRefPubMed
176.
go back to reference Okamoto MT, Nobunaga T, Suzuki Y. Delay in ovulation with pentobarbital anesthesia applied at various stages of the 4-day cyclic rat. Endocrinologica Japonica. 1972;19:11–7.CrossRef Okamoto MT, Nobunaga T, Suzuki Y. Delay in ovulation with pentobarbital anesthesia applied at various stages of the 4-day cyclic rat. Endocrinologica Japonica. 1972;19:11–7.CrossRef
177.
go back to reference Domínguez R, Riboni L, Zipitría D, Revilla R. Is there a cholinergic circadian rhythm throughout the estrous cycle related to ovulation in the rat? J Endocrinol. 1982;95:175–80.CrossRefPubMed Domínguez R, Riboni L, Zipitría D, Revilla R. Is there a cholinergic circadian rhythm throughout the estrous cycle related to ovulation in the rat? J Endocrinol. 1982;95:175–80.CrossRefPubMed
178.
go back to reference Domínguez R, Gaitán CM, Méndez SA, Ulloa-Aguirre A. Effects of cathecolaminergic blockade by haloperidol or propanolol at different stages of the estrous cycle on ovulation and gonadotropin levels in the rat. J Endocrinol. 1987;113:37–44.CrossRefPubMed Domínguez R, Gaitán CM, Méndez SA, Ulloa-Aguirre A. Effects of cathecolaminergic blockade by haloperidol or propanolol at different stages of the estrous cycle on ovulation and gonadotropin levels in the rat. J Endocrinol. 1987;113:37–44.CrossRefPubMed
179.
go back to reference Cruz ME, Villegas G, Domínguez-González A, Chavira R, Domínguez R. Ovulation delay induced by blockade of the cholinergic system on diestrous-1, is related to changes in dopaminergic activity of the preoptic anterior-hypothalamic area of the rat. Brain Res Bull. 2001;54:339–44.CrossRefPubMed Cruz ME, Villegas G, Domínguez-González A, Chavira R, Domínguez R. Ovulation delay induced by blockade of the cholinergic system on diestrous-1, is related to changes in dopaminergic activity of the preoptic anterior-hypothalamic area of the rat. Brain Res Bull. 2001;54:339–44.CrossRefPubMed
180.
go back to reference Cruz ME, Flores A, Palafox MT, Meléndez G, Rodríguez JO, Chavira R, et al. The role of the muscarinic system in regulating estradiol secretion varies during the estrous cycle: the hemiovariectomized rat model. Reprod Biol Endocrinol. 2006. https://doi.org/10.1186/1477-7827-4-43. Cruz ME, Flores A, Palafox MT, Meléndez G, Rodríguez JO, Chavira R, et al. The role of the muscarinic system in regulating estradiol secretion varies during the estrous cycle: the hemiovariectomized rat model. Reprod Biol Endocrinol. 2006. https://​doi.​org/​10.​1186/​1477-7827-4-43.
181.
go back to reference Flores A, Rodríguez JO, Palafox MT, Meléndez G, Barco AI, Chavira R, et al. The acute asymmetric effects of hemiovariectomy on testosterone secretion vary along the estrous cycle. The participation of the cholinergic system. Reprod Biol Endocrinol. 2006. https://doi.org/10.1186/1477-7827-4-11. Flores A, Rodríguez JO, Palafox MT, Meléndez G, Barco AI, Chavira R, et al. The acute asymmetric effects of hemiovariectomy on testosterone secretion vary along the estrous cycle. The participation of the cholinergic system. Reprod Biol Endocrinol. 2006. https://​doi.​org/​10.​1186/​1477-7827-4-11.
182.
go back to reference Morán JL, Domínguez R. Effects of the unilateral implant of haloperidol at the preoptic-anterior hypothalamic área, on ovulation. Endocrine. 1995;3:391–3.CrossRefPubMed Morán JL, Domínguez R. Effects of the unilateral implant of haloperidol at the preoptic-anterior hypothalamic área, on ovulation. Endocrine. 1995;3:391–3.CrossRefPubMed
183.
go back to reference Cruz ME, Flores A, Domínguez R. The cholinergic system of the preoptic-anterior hypothalamic areas regulates the ovarian follicular population in an asymmetric way. Endocrine. 2014;47:913–22.CrossRefPubMed Cruz ME, Flores A, Domínguez R. The cholinergic system of the preoptic-anterior hypothalamic areas regulates the ovarian follicular population in an asymmetric way. Endocrine. 2014;47:913–22.CrossRefPubMed
184.
go back to reference Espinoza-Valdez A, Flores A, Arrieta-Cruz I, Cárdenas M, Chavira R, Domínguez R, et al. The participation of the muscarinic receptors in the preoptic-anterior hypothalamic áreas in the regulation of ovulation depends on the ovary. Reprod Biol Endocrinol. 2016. https://doi.org/10.1186/s12958-016-0208-3. Espinoza-Valdez A, Flores A, Arrieta-Cruz I, Cárdenas M, Chavira R, Domínguez R, et al. The participation of the muscarinic receptors in the preoptic-anterior hypothalamic áreas in the regulation of ovulation depends on the ovary. Reprod Biol Endocrinol. 2016. https://​doi.​org/​10.​1186/​s12958-016-0208-3.
185.
go back to reference López-Ramírez YL, López-Ramírez K, Arrieta-Cruz I, Flores A, Mendoza-Garcés L, Librado-Osorio RA, et al. Muscarinic receptors types 1 and 2 in the preoptic-anterior hypothalamic áreas regulate ovulation unequally in the rat oestrous cycle. Int J Endocrinol. 2017. https://doi.org/10.1155/2017/4357080. López-Ramírez YL, López-Ramírez K, Arrieta-Cruz I, Flores A, Mendoza-Garcés L, Librado-Osorio RA, et al. Muscarinic receptors types 1 and 2 in the preoptic-anterior hypothalamic áreas regulate ovulation unequally in the rat oestrous cycle. Int J Endocrinol. 2017. https://​doi.​org/​10.​1155/​2017/​4357080.
186.
go back to reference Vieyra E, Ramírez DA, Lagunas N, Cárdenas M, Chavira R, Matsumura PD, et al. Unilaterally blocking the muscarinic receptors in the suprachiasmatic nucleus in proestrous rats prevents pre-ovulatory LH secretion and ovulation. Reprod Biol Endocrinol. 2016. https://doi.org/10.1186/s12958-016-0168-7. Vieyra E, Ramírez DA, Lagunas N, Cárdenas M, Chavira R, Matsumura PD, et al. Unilaterally blocking the muscarinic receptors in the suprachiasmatic nucleus in proestrous rats prevents pre-ovulatory LH secretion and ovulation. Reprod Biol Endocrinol. 2016. https://​doi.​org/​10.​1186/​s12958-016-0168-7.
188.
go back to reference Eskes GA. Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res. 1984;293:127–41.CrossRefPubMed Eskes GA. Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res. 1984;293:127–41.CrossRefPubMed
189.
go back to reference Richter CP. Dependence of successful mating in rats on functioning of the 24-hour clocks of the male and female. Communications in Behavioral Biology. 1970;5:1–5. Richter CP. Dependence of successful mating in rats on functioning of the 24-hour clocks of the male and female. Communications in Behavioral Biology. 1970;5:1–5.
190.
go back to reference Morin LP, Zucker I. Photoperiodic regulation of copulatory behavior in the male hamster. J Endocrinol. 1978;77:249–58.CrossRefPubMed Morin LP, Zucker I. Photoperiodic regulation of copulatory behavior in the male hamster. J Endocrinol. 1978;77:249–58.CrossRefPubMed
193.
go back to reference Sakai N, Endo A. Effects of delayed mating on preimplantation embryos in spontaneously ovulated mice. Gamete Research. 1988;19:381–5.CrossRefPubMed Sakai N, Endo A. Effects of delayed mating on preimplantation embryos in spontaneously ovulated mice. Gamete Research. 1988;19:381–5.CrossRefPubMed
194.
go back to reference Palmer KT, Bonzini M, Harris EC, Linaker C, Bonde JP. Work activities and risk of prematurity, low birth weight and pre-eclampsia: an updated review with meta-analysis. Occup Environ Med. 2013;70:213–22.CrossRefPubMed Palmer KT, Bonzini M, Harris EC, Linaker C, Bonde JP. Work activities and risk of prematurity, low birth weight and pre-eclampsia: an updated review with meta-analysis. Occup Environ Med. 2013;70:213–22.CrossRefPubMed
195.
go back to reference Bonde JP, Jorgensen KT, Bozini M, Palmer KT. Miscarriage and occupational activity: a systematic review and meta-analysis regarding shiftwork, working hours, lifting, standing, and physical workload. Scand J Work Environ Health. 2013;39:325–34.CrossRefPubMed Bonde JP, Jorgensen KT, Bozini M, Palmer KT. Miscarriage and occupational activity: a systematic review and meta-analysis regarding shiftwork, working hours, lifting, standing, and physical workload. Scand J Work Environ Health. 2013;39:325–34.CrossRefPubMed
196.
go back to reference Stocker LJ, Macklon NS, Cheong YC, Bewley SJ. Influence of shift work on early reproductive outcomes: a systematic review and meta-analysis. Obstet Gynecol. 2014;124:99–110.CrossRefPubMed Stocker LJ, Macklon NS, Cheong YC, Bewley SJ. Influence of shift work on early reproductive outcomes: a systematic review and meta-analysis. Obstet Gynecol. 2014;124:99–110.CrossRefPubMed
197.
go back to reference Gaskins AJ, Rich-Edwards JW, Lawson CC, Schernhammer ES, Missmer A, Chavarro JE. Work schedule and physical factors in relation to fecundity in nurses. Occup Environ Med. 2015;72:777–83.CrossRefPubMed Gaskins AJ, Rich-Edwards JW, Lawson CC, Schernhammer ES, Missmer A, Chavarro JE. Work schedule and physical factors in relation to fecundity in nurses. Occup Environ Med. 2015;72:777–83.CrossRefPubMed
198.
go back to reference Lawson CC, Johnson CY, Chavarro JE, Lividoti Hibert EN, Whelan EA, Rocheleau CM, et al. Work schedule and physically demanding work in relation to menstrual function: the nurses’ health study 3. Scand J Work Environ Health. 2015;41:194–203.CrossRefPubMed Lawson CC, Johnson CY, Chavarro JE, Lividoti Hibert EN, Whelan EA, Rocheleau CM, et al. Work schedule and physically demanding work in relation to menstrual function: the nurses’ health study 3. Scand J Work Environ Health. 2015;41:194–203.CrossRefPubMed
200.
go back to reference Robert KA, Lesku JA, Partecke J, Chambers B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc R Soc B. 2015;282:20151745.CrossRefPubMedPubMedCentral Robert KA, Lesku JA, Partecke J, Chambers B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc R Soc B. 2015;282:20151745.CrossRefPubMedPubMedCentral
Metadata
Title
Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins
Authors
Carlos-Camilo Silva
Roberto Domínguez
Publication date
01-03-2020
Publisher
Springer US
Keyword
Estradiol
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 1/2020
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-019-09525-9

Other articles of this Issue 1/2020

Reviews in Endocrine and Metabolic Disorders 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.