Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-06-2019 | Review

Physiology and technology for the ICU in vivo

Author: Can Ince

Published in: Critical Care | Special Issue 1/2019

Login to get access

Abstract

This paper discusses the physiological and technological concepts that might form the future of critical care medicine. Initially, we discuss the need for a personalized approach and introduce the concept of personalized physiological medicine (PPM), including (1) assessment of frailty and physiological reserve, (2) continuous assessment of organ function, (3) assessment of the microcirculation and parenchymal cells, and (4) integration of organ and cell function for continuous therapeutic feedback control. To understand the cellular basis of organ failure, we discuss the processes that lead to cell death, including necrosis, necroptosis, autophagy, mitophagy, and cellular senescence. In vivo technology is used to monitor these processes. To this end, we discuss new materials for developing in vivo biosensors and drug delivery systems. Such in vivo biosensors will define the diagnostic platform of the future ICU in vivo interacting with theragnostic drugs. In addition to pharmacological therapeutic options, placement and control of artificial organs to support or replace failing organs will be central in the ICU in vivo of the future. Remote monitoring and control of these biosensors and artificial organs will be made using adaptive physiological mathematical modeling of the critically ill patient. The current state of these developments is discussed.
Literature
2.
go back to reference Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet. 2014;86:56–61.PubMedCrossRef Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet. 2014;86:56–61.PubMedCrossRef
4.
go back to reference Ince C. Intensive care medicine in 2050: the ICU in vivo. Intensive Care Med. 2017;43:170–1704.CrossRef Ince C. Intensive care medicine in 2050: the ICU in vivo. Intensive Care Med. 2017;43:170–1704.CrossRef
6.
go back to reference Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari SR, Leetongin G, Kahlmeier S. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380:294–305.PubMedCrossRef Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari SR, Leetongin G, Kahlmeier S. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380:294–305.PubMedCrossRef
7.
go back to reference Le Maguet P, Roquilly A, Lasocki S, Asehnoune K, Carise E, Saint Martin M, Mimoz O, Le Gac G, Somme D, Cattenoz C, Feuillet F, Malledant Y, Seguin P. Prevalence and impact of frailty on mortality in elderly ICU patients: a prospective, multicenter, observational study. Intensive Care Med. 2014;40:674–82.PubMed Le Maguet P, Roquilly A, Lasocki S, Asehnoune K, Carise E, Saint Martin M, Mimoz O, Le Gac G, Somme D, Cattenoz C, Feuillet F, Malledant Y, Seguin P. Prevalence and impact of frailty on mortality in elderly ICU patients: a prospective, multicenter, observational study. Intensive Care Med. 2014;40:674–82.PubMed
8.
go back to reference Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.PubMedCrossRef Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.PubMedCrossRef
9.
go back to reference Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov. 2016;15(10):719–29.PubMedCrossRef Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov. 2016;15(10):719–29.PubMedCrossRef
10.
go back to reference Tyml K, Swarbreck S, Pape C, Secor D, Koropatnick J, Feng Q, Veldhuizen RAW, Gill SE. Voluntary running exercise protects against sepsis-induced early inflammatory and pro-coagulant responses in aged mice. Crit Care. 2017;21(1):210.PubMedPubMedCentralCrossRef Tyml K, Swarbreck S, Pape C, Secor D, Koropatnick J, Feng Q, Veldhuizen RAW, Gill SE. Voluntary running exercise protects against sepsis-induced early inflammatory and pro-coagulant responses in aged mice. Crit Care. 2017;21(1):210.PubMedPubMedCentralCrossRef
11.
go back to reference Okusa MD, Jaber BL, Doran P, Duranteau J, Yang L, Murray PT, Mehta RL, Ince C. Physiological biomarkers of acute kidney injury: a conceptual approach to improving outcomes. Contrib Nephrol. 2013;182:65–81.PubMedCrossRef Okusa MD, Jaber BL, Doran P, Duranteau J, Yang L, Murray PT, Mehta RL, Ince C. Physiological biomarkers of acute kidney injury: a conceptual approach to improving outcomes. Contrib Nephrol. 2013;182:65–81.PubMedCrossRef
12.
go back to reference Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, Pinsky MR, Artigas A, Teboul JL, Reiss IKM, Aldecoa C, Hutchings SD, Donati A, Maggiorini M, Taccone FS, Hernandez G, Payen D, Tibboel D, Martin DS, Zarbock A, Monnet X, Dubin A, Bakker J, Vincent JL, Scheeren TWL. Second consensus on the assessment of sublingual microcirculation in critically ill patients. Intensive Care Med. 2018;44(3):281–99.PubMedCrossRef Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, Pinsky MR, Artigas A, Teboul JL, Reiss IKM, Aldecoa C, Hutchings SD, Donati A, Maggiorini M, Taccone FS, Hernandez G, Payen D, Tibboel D, Martin DS, Zarbock A, Monnet X, Dubin A, Bakker J, Vincent JL, Scheeren TWL. Second consensus on the assessment of sublingual microcirculation in critically ill patients. Intensive Care Med. 2018;44(3):281–99.PubMedCrossRef
13.
go back to reference Hilty MP, Pichler J, Ergin B, Hefti U, Merz TM, Ince C, Maggiorini M. Assessment of endothelial cell function and physiological microcirculatory reserve by video microscopy using a topical acetylcholine and nitroglycerin challenge. Intensive Care Med Exp. 2017;5(1):26.PubMedPubMedCentralCrossRef Hilty MP, Pichler J, Ergin B, Hefti U, Merz TM, Ince C, Maggiorini M. Assessment of endothelial cell function and physiological microcirculatory reserve by video microscopy using a topical acetylcholine and nitroglycerin challenge. Intensive Care Med Exp. 2017;5(1):26.PubMedPubMedCentralCrossRef
14.
go back to reference Nyquist H. Certain topics in telegraph transmission theory. AIEE Transactions. 1928;47:617–44. Nyquist H. Certain topics in telegraph transmission theory. AIEE Transactions. 1928;47:617–44.
15.
go back to reference Shannon CE. A mathematical theory of communication. Bell System Tech J. 1948;27:379–423.CrossRef Shannon CE. A mathematical theory of communication. Bell System Tech J. 1948;27:379–423.CrossRef
16.
go back to reference Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res. 2003;283(1):1–16.PubMedCrossRef Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res. 2003;283(1):1–16.PubMedCrossRef
19.
go back to reference Bhan C, Dipankar P, Chakraborty P, Sarangi PP. Role of cellular events in the pathophysiology of sepsis. Inflamm Res. 2016;65(11):853–68.PubMedCrossRef Bhan C, Dipankar P, Chakraborty P, Sarangi PP. Role of cellular events in the pathophysiology of sepsis. Inflamm Res. 2016;65(11):853–68.PubMedCrossRef
22.
go back to reference Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, Friedrich B, Dreischer P, Wolz C, Schumacher U, Peschel A, Götz F, Döring G, Wieder T, Gulbins E, Lang F. Suicidal erythrocyte death in sepsis. J Mol Med (Berl). 2007;85(3):273–81.CrossRef Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, Friedrich B, Dreischer P, Wolz C, Schumacher U, Peschel A, Götz F, Döring G, Wieder T, Gulbins E, Lang F. Suicidal erythrocyte death in sepsis. J Mol Med (Berl). 2007;85(3):273–81.CrossRef
23.
go back to reference McHale TM, Garciarena CD, Fagan RP, Smith SGJ, Martin-Loches I, Curley GF, Fitzpatrick F, Kerrigan SW. Inhibition of vascular endothelial cell leak following escherichia coli attachment in an experimental model of sepsis. Crit Care Med. 2018;46(8):e805–10.PubMedCrossRef McHale TM, Garciarena CD, Fagan RP, Smith SGJ, Martin-Loches I, Curley GF, Fitzpatrick F, Kerrigan SW. Inhibition of vascular endothelial cell leak following escherichia coli attachment in an experimental model of sepsis. Crit Care Med. 2018;46(8):e805–10.PubMedCrossRef
24.
go back to reference Sepúlveda JC, Tomé M, Fernández ME, Delgado M, Campisi J, Bernad A, González MA. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells. 2014;32(7):1865–77.PubMedPubMedCentralCrossRef Sepúlveda JC, Tomé M, Fernández ME, Delgado M, Campisi J, Bernad A, González MA. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells. 2014;32(7):1865–77.PubMedPubMedCentralCrossRef
25.
go back to reference Wei W, Ji S. Cellular senescence: molecular mechanisms and pathogenicity. J Cell Physiol. 2018;233(12):9121–35.PubMedCrossRef Wei W, Ji S. Cellular senescence: molecular mechanisms and pathogenicity. J Cell Physiol. 2018;233(12):9121–35.PubMedCrossRef
28.
go back to reference Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmelé T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.PubMedPubMedCentralCrossRef Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmelé T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.PubMedPubMedCentralCrossRef
29.
go back to reference Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant. 2015;30(4):575–83.PubMedCrossRef Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant. 2015;30(4):575–83.PubMedCrossRef
30.
go back to reference Ho J, Yu J, Wong SH, Zhang L, Liu X, Wong WT, Leung CC, Choi G, Wang MH, Gin T, Chan MT, Wu WK. Autophagy in sepsis: degradation into exhaustion? Autophagy. 2016;12(7):1073–82.PubMedPubMedCentralCrossRef Ho J, Yu J, Wong SH, Zhang L, Liu X, Wong WT, Leung CC, Choi G, Wang MH, Gin T, Chan MT, Wu WK. Autophagy in sepsis: degradation into exhaustion? Autophagy. 2016;12(7):1073–82.PubMedPubMedCentralCrossRef
31.
go back to reference Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC, Chuang SM, Hsu C. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 2012;37:289–96.PubMedCrossRef Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC, Chuang SM, Hsu C. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 2012;37:289–96.PubMedCrossRef
32.
go back to reference Ren C, Zhang H1, Wu TT, Yao YM. Autophagy: a potential therapeutic target for reversing Sepsis-induced immunosuppression. Front Immunol. 2017;18(8):1832.CrossRef Ren C, Zhang H1, Wu TT, Yao YM. Autophagy: a potential therapeutic target for reversing Sepsis-induced immunosuppression. Front Immunol. 2017;18(8):1832.CrossRef
33.
go back to reference Stallons LJ, Funk JA, Schnellmann RG. Mitochondrial homeostasis in acute organ failure. Curr Pathobiol Rep. 2013;1(3).CrossRef Stallons LJ, Funk JA, Schnellmann RG. Mitochondrial homeostasis in acute organ failure. Curr Pathobiol Rep. 2013;1(3).CrossRef
34.
go back to reference Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833(12):3448–59.PubMedCrossRef Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833(12):3448–59.PubMedCrossRef
35.
go back to reference Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus responsive cancer therapies. Biomaterials. 2015;73:214–30.PubMedCrossRef Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus responsive cancer therapies. Biomaterials. 2015;73:214–30.PubMedCrossRef
36.
go back to reference Stefflova K, Chen J, Marotta D, Li H, Zheng G. Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem. 2006;49(13):3850–6.PubMedCrossRef Stefflova K, Chen J, Marotta D, Li H, Zheng G. Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem. 2006;49(13):3850–6.PubMedCrossRef
37.
go back to reference Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59(18):8149–67.PubMedCrossRef Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59(18):8149–67.PubMedCrossRef
38.
go back to reference Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012;4(2):330–42.PubMedCrossRef Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012;4(2):330–42.PubMedCrossRef
39.
go back to reference Rao SG, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature. 2003;425(6953):36–7.PubMedCrossRef Rao SG, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature. 2003;425(6953):36–7.PubMedCrossRef
40.
go back to reference Rakesh L, Howell BA, Chai M, Mueller A, Kujawski M, Fan D, Ravi S, Slominski C. Computer-aided applications of nanoscale smart materials for biomedical applications. Nanomedicine. 2008;3(5):719–39.PubMedCrossRef Rakesh L, Howell BA, Chai M, Mueller A, Kujawski M, Fan D, Ravi S, Slominski C. Computer-aided applications of nanoscale smart materials for biomedical applications. Nanomedicine. 2008;3(5):719–39.PubMedCrossRef
41.
42.
43.
go back to reference Gao W, Brooks GA, Klonoff DC. Wearable physiological systems and technologies for metabolic monitoring. J Appl Physiol. 2018;124(3):548–56.PubMedCrossRef Gao W, Brooks GA, Klonoff DC. Wearable physiological systems and technologies for metabolic monitoring. J Appl Physiol. 2018;124(3):548–56.PubMedCrossRef
44.
go back to reference Chałupniak A, Morales-Narváez E, Merkoçi A. Micro and nanomotors in diagnostics. Adv Drug Deliv Rev. 2015;95:104–16.PubMedCrossRef Chałupniak A, Morales-Narváez E, Merkoçi A. Micro and nanomotors in diagnostics. Adv Drug Deliv Rev. 2015;95:104–16.PubMedCrossRef
45.
go back to reference Denzer UW, Rösch T, Hoytat B, Abdel-Hamid M, Hebuterne X, Vanbiervielt G, Filippi J, Ogata H, Hosoe N, Ohtsuka K, Ogata N, Ikeda K, Aihara H, Kudo SE, Tajiri H, Treszl A, Wegscheider K, Greff M, Rey JF. Magnetically guided capsule versus conventional gastroscopy for upper abdominal complaints: a prospective blinded study. J Clin Gastroenterol. 2015;49(2):101–7.PubMedCrossRef Denzer UW, Rösch T, Hoytat B, Abdel-Hamid M, Hebuterne X, Vanbiervielt G, Filippi J, Ogata H, Hosoe N, Ohtsuka K, Ogata N, Ikeda K, Aihara H, Kudo SE, Tajiri H, Treszl A, Wegscheider K, Greff M, Rey JF. Magnetically guided capsule versus conventional gastroscopy for upper abdominal complaints: a prospective blinded study. J Clin Gastroenterol. 2015;49(2):101–7.PubMedCrossRef
46.
go back to reference Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C. Cardiovascular tissue engineering: Preclinical validation to bedside application. Physiology. 2016;31(1):7–15.PubMedCrossRef Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C. Cardiovascular tissue engineering: Preclinical validation to bedside application. Physiology. 2016;31(1):7–15.PubMedCrossRef
47.
go back to reference Kadakia S, Moore R, Ambur V, Toyoda Y. Current status of the implantable LVAD. Gen Thorac Cardiovasc Surg. 2016;64(9):501–8.PubMedCrossRef Kadakia S, Moore R, Ambur V, Toyoda Y. Current status of the implantable LVAD. Gen Thorac Cardiovasc Surg. 2016;64(9):501–8.PubMedCrossRef
48.
go back to reference Attanasio C, Latancia MT, Otterbein LE, Netti PA. Update on renal replacement therapy: implantable artificial devices and bioengineered organs. Tissue Eng. 2016;22(4):330–40.CrossRef Attanasio C, Latancia MT, Otterbein LE, Netti PA. Update on renal replacement therapy: implantable artificial devices and bioengineered organs. Tissue Eng. 2016;22(4):330–40.CrossRef
50.
go back to reference Gilpin SE, Ott HC. Using nature's platform to engineer bio-artificial lungs. Ann Am Thorac Soc. 2015;12(Suppl 1):S45–9.PubMedCrossRef Gilpin SE, Ott HC. Using nature's platform to engineer bio-artificial lungs. Ann Am Thorac Soc. 2015;12(Suppl 1):S45–9.PubMedCrossRef
51.
52.
go back to reference Stone DJ, Celi LA, Csete M. Engineering control into medicine. J Crit Care. 2015;30(3):652.e1–7.CrossRef Stone DJ, Celi LA, Csete M. Engineering control into medicine. J Crit Care. 2015;30(3):652.e1–7.CrossRef
53.
go back to reference Brendle C, Mülders T, Kühn J, Janisch T, Kopp R, Rossaint R, Stollenwerk A, Kowalewski S, Misgeld B, Leonhardt S, Walter M. Physiological closed-loop control of mechanical ventilation and extracorporeal membrane oxygenation. Biomed Tech (Berl). 2017;62(2):199–212.CrossRef Brendle C, Mülders T, Kühn J, Janisch T, Kopp R, Rossaint R, Stollenwerk A, Kowalewski S, Misgeld B, Leonhardt S, Walter M. Physiological closed-loop control of mechanical ventilation and extracorporeal membrane oxygenation. Biomed Tech (Berl). 2017;62(2):199–212.CrossRef
54.
go back to reference Hunter P, Nielsen P. A strategy for integrative computational physiology. Physiology (Bethesda). 2005;20:316–25. Hunter P, Nielsen P. A strategy for integrative computational physiology. Physiology (Bethesda). 2005;20:316–25.
55.
go back to reference Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.PubMedPubMedCentralCrossRef Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.PubMedPubMedCentralCrossRef
56.
go back to reference Kamaleswaran R, Akbilgic O, Hallman MA, West AN, Davis RL, Shah SH. Applying artificial intelligence to identify physiomarkers predicting severe sepsis in the PICU. Pediatr Crit Care Med. 2018;19(10):e495–503.PubMedCrossRef Kamaleswaran R, Akbilgic O, Hallman MA, West AN, Davis RL, Shah SH. Applying artificial intelligence to identify physiomarkers predicting severe sepsis in the PICU. Pediatr Crit Care Med. 2018;19(10):e495–503.PubMedCrossRef
Metadata
Title
Physiology and technology for the ICU in vivo
Author
Can Ince
Publication date
01-06-2019
Publisher
BioMed Central
Published in
Critical Care / Issue Special Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2416-7

Other articles of this Special Issue 1/2019

Critical Care 1/2019 Go to the issue