Skip to main content
Top
Published in: Critical Care 1/2013

Open Access 01-02-2013 | Research

Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

Authors: Kianoush Kashani, Ali Al-Khafaji, Thomas Ardiles, Antonio Artigas, Sean M Bagshaw, Max Bell, Azra Bihorac, Robert Birkhahn, Cynthia M Cely, Lakhmir S Chawla, Danielle L Davison, Thorsten Feldkamp, Lui G Forni, Michelle Ng Gong, Kyle J Gunnerson, Michael Haase, James Hackett, Patrick M Honore, Eric AJ Hoste, Olivier Joannes-Boyau, Michael Joannidis, Patrick Kim, Jay L Koyner, Daniel T Laskowitz, Matthew E Lissauer, Gernot Marx, Peter A McCullough, Scott Mullaney, Marlies Ostermann, Thomas Rimmelé, Nathan I Shapiro, Andrew D Shaw, Jing Shi, Amy M Sprague, Jean-Louis Vincent, Christophe Vinsonneau, Ludwig Wagner, Michael G Walker, R Gentry Wilkerson, Kai Zacharowski, John A Kellum

Published in: Critical Care | Issue 1/2013

Login to get access

Abstract

Introduction

Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI.

Methods

We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection.

Results

Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P <0.002), none of which achieved an AUC >0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method.

Conclusions

Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI.

Trial registration

ClinicalTrials.gov number NCT01209169.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA: RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006, 10: R73. 10.1186/cc4915PubMedCentralCrossRefPubMed Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA: RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006, 10: R73. 10.1186/cc4915PubMedCentralCrossRefPubMed
3.
go back to reference Murugan R, Karajala-Subramanyam V, Lee M, Yende S, Kong L, Carter M, Angus DC, Jellum JA: Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int 2010, 77: 527-535. 10.1038/ki.2009.502PubMedCentralCrossRefPubMed Murugan R, Karajala-Subramanyam V, Lee M, Yende S, Kong L, Carter M, Angus DC, Jellum JA: Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int 2010, 77: 527-535. 10.1038/ki.2009.502PubMedCentralCrossRefPubMed
4.
go back to reference Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A: Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 2009, 119: 2444-2453. 10.1161/CIRCULATIONAHA.108.800011CrossRefPubMed Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A: Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 2009, 119: 2444-2453. 10.1161/CIRCULATIONAHA.108.800011CrossRefPubMed
5.
go back to reference Bihorac A, Yavas S, Subbiah S, Hobson CE, Schold JD, Gabrielli A, Layon AJ, Segal MS: Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg 2009, 249: 851-858. 10.1097/SLA.0b013e3181a40a0bCrossRefPubMed Bihorac A, Yavas S, Subbiah S, Hobson CE, Schold JD, Gabrielli A, Layon AJ, Segal MS: Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg 2009, 249: 851-858. 10.1097/SLA.0b013e3181a40a0bCrossRefPubMed
6.
go back to reference Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, Herzog CA, Joannidis M, Kribben A, MacLeod AM, Mehta RL, Murray PT, Naicker S, Opal SM, Schaefer F, Schetz M, Uchino S: KDIGO Clinical Practice Guideline for Acute Kidney Injury 2012. Kidney International Supplements 2012, 2: 1-138.CrossRef Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, Herzog CA, Joannidis M, Kribben A, MacLeod AM, Mehta RL, Murray PT, Naicker S, Opal SM, Schaefer F, Schetz M, Uchino S: KDIGO Clinical Practice Guideline for Acute Kidney Injury 2012. Kidney International Supplements 2012, 2: 1-138.CrossRef
7.
go back to reference Siew ED, Ware LB, Ikizler TA: Biological markers of acute kidney injury. J Am Soc Nephrol 2011, 22: 810-820. 10.1681/ASN.2010080796CrossRefPubMed Siew ED, Ware LB, Ikizler TA: Biological markers of acute kidney injury. J Am Soc Nephrol 2011, 22: 810-820. 10.1681/ASN.2010080796CrossRefPubMed
8.
go back to reference Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C: Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005, 294: 813-818. 10.1001/jama.294.7.813CrossRefPubMed Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C: Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005, 294: 813-818. 10.1001/jama.294.7.813CrossRefPubMed
9.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP: STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007, 147: 573-577. 10.7326/0003-4819-147-8-200710160-00010CrossRefPubMed von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP: STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007, 147: 573-577. 10.7326/0003-4819-147-8-200710160-00010CrossRefPubMed
10.
go back to reference Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P: Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004, 8: R204-R212. 10.1186/cc2872PubMedCentralCrossRefPubMed Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P: Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004, 8: R204-R212. 10.1186/cc2872PubMedCentralCrossRefPubMed
11.
go back to reference Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A: Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007, 11: R31. 10.1186/cc5713PubMedCentralCrossRefPubMed Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A: Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007, 11: R31. 10.1186/cc5713PubMedCentralCrossRefPubMed
12.
go back to reference Palevsky PM, Molitoris BA, Okusa MD, Levin A, Waikar SS, Wald R, Chertow GM, Murray PT, Parikh CR, Shaw AD, Go AS, Faubel SG, Kellum JA, Chinchilli VM, Liu KD, Cheung AK, Weisbord SD, Chawla LS, Kaufman JS, Devarajan P, Toto RM, Hsu CY, Greene T, Mehta RL, Stokes JB, Thompson AM, Thompson BT, Westenfelder CS, Tumlin JA, Warnock DG, et al.: Design of clinical trials in acute kidney injury: report from an NIDDK workshop on trial methodology. Clin J Am Soc Nephrol 2012, 7: 844-850. 10.2215/CJN.12791211CrossRefPubMed Palevsky PM, Molitoris BA, Okusa MD, Levin A, Waikar SS, Wald R, Chertow GM, Murray PT, Parikh CR, Shaw AD, Go AS, Faubel SG, Kellum JA, Chinchilli VM, Liu KD, Cheung AK, Weisbord SD, Chawla LS, Kaufman JS, Devarajan P, Toto RM, Hsu CY, Greene T, Mehta RL, Stokes JB, Thompson AM, Thompson BT, Westenfelder CS, Tumlin JA, Warnock DG, et al.: Design of clinical trials in acute kidney injury: report from an NIDDK workshop on trial methodology. Clin J Am Soc Nephrol 2012, 7: 844-850. 10.2215/CJN.12791211CrossRefPubMed
14.
go back to reference Hollander M, Wolfe DA: Nonparametric Statistical Methods. Second edition. New York: John Wiley & Sons; 1999. Hollander M, Wolfe DA: Nonparametric Statistical Methods. Second edition. New York: John Wiley & Sons; 1999.
17.
go back to reference Sharfuddin AA, Molitoris BA: Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 2011, 7: 189-200.CrossRefPubMed Sharfuddin AA, Molitoris BA: Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 2011, 7: 189-200.CrossRefPubMed
18.
go back to reference Rifai N, Gillette MA, Carr SA: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006, 24: 971-983. 10.1038/nbt1235CrossRefPubMed Rifai N, Gillette MA, Carr SA: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006, 24: 971-983. 10.1038/nbt1235CrossRefPubMed
19.
go back to reference Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE: The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 2011, 79: 1361-1369. 10.1038/ki.2011.42PubMedCentralCrossRefPubMed Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE: The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 2011, 79: 1361-1369. 10.1038/ki.2011.42PubMedCentralCrossRefPubMed
20.
go back to reference Doi K, Leelahavanichkul A, Yuen PS, Star RA: Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 2009, 119: 2868-2878. 10.1172/JCI39421PubMedCentralCrossRefPubMed Doi K, Leelahavanichkul A, Yuen PS, Star RA: Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 2009, 119: 2868-2878. 10.1172/JCI39421PubMedCentralCrossRefPubMed
21.
go back to reference Devarajan P: Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006, 17: 1503-1520. 10.1681/ASN.2006010017CrossRefPubMed Devarajan P: Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006, 17: 1503-1520. 10.1681/ASN.2006010017CrossRefPubMed
23.
go back to reference Boonstra J, Post JA: Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004, 337: 1-13.CrossRefPubMed Boonstra J, Post JA: Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004, 337: 1-13.CrossRefPubMed
24.
go back to reference Seo DW, Li H, Qu CK, Oh J, Kim YS, Diaz T, Wei B, Han JW, Stetler-Stevenson WG: Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem 2006, 281: 3711-3721.PubMedCentralCrossRefPubMed Seo DW, Li H, Qu CK, Oh J, Kim YS, Diaz T, Wei B, Han JW, Stetler-Stevenson WG: Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem 2006, 281: 3711-3721.PubMedCentralCrossRefPubMed
25.
go back to reference Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT: Acute renal failure during sepsis: potential role of cell cycle regulation. J Infect 2009, 58: 459-464. 10.1016/j.jinf.2009.04.003CrossRefPubMed Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT: Acute renal failure during sepsis: potential role of cell cycle regulation. J Infect 2009, 58: 459-464. 10.1016/j.jinf.2009.04.003CrossRefPubMed
26.
go back to reference Witzgall R, Brown D, Schwarz C, Bonventre JV: Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 1994, 93: 2175-2188. 10.1172/JCI117214PubMedCentralCrossRefPubMed Witzgall R, Brown D, Schwarz C, Bonventre JV: Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 1994, 93: 2175-2188. 10.1172/JCI117214PubMedCentralCrossRefPubMed
27.
go back to reference Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG: TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 2003, 114: 171-180. 10.1016/S0092-8674(03)00551-8CrossRefPubMed Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG: TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 2003, 114: 171-180. 10.1016/S0092-8674(03)00551-8CrossRefPubMed
28.
go back to reference Stetler-Stevenson WG: Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008, 1: re6. 10.1126/scisignal.127re6PubMedCentralCrossRefPubMed Stetler-Stevenson WG: Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008, 1: re6. 10.1126/scisignal.127re6PubMedCentralCrossRefPubMed
29.
go back to reference Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008, 132: 363-374. 10.1016/j.cell.2007.12.032PubMedCentralCrossRefPubMed Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008, 132: 363-374. 10.1016/j.cell.2007.12.032PubMedCentralCrossRefPubMed
30.
go back to reference Zuo S, Liu C, Wang J, Wang F, Xu W, Cui S, Yuan L, Chen X, Fan W, Cui M, Song G: IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol 2012, 138: 1045-1055. 10.1007/s00432-012-1153-yCrossRefPubMed Zuo S, Liu C, Wang J, Wang F, Xu W, Cui S, Yuan L, Chen X, Fan W, Cui M, Song G: IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol 2012, 138: 1045-1055. 10.1007/s00432-012-1153-yCrossRefPubMed
32.
go back to reference Vincent JL, Morena R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996, 22: 707-710. 10.1007/BF01709751CrossRefPubMed Vincent JL, Morena R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996, 22: 707-710. 10.1007/BF01709751CrossRefPubMed
Metadata
Title
Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury
Authors
Kianoush Kashani
Ali Al-Khafaji
Thomas Ardiles
Antonio Artigas
Sean M Bagshaw
Max Bell
Azra Bihorac
Robert Birkhahn
Cynthia M Cely
Lakhmir S Chawla
Danielle L Davison
Thorsten Feldkamp
Lui G Forni
Michelle Ng Gong
Kyle J Gunnerson
Michael Haase
James Hackett
Patrick M Honore
Eric AJ Hoste
Olivier Joannes-Boyau
Michael Joannidis
Patrick Kim
Jay L Koyner
Daniel T Laskowitz
Matthew E Lissauer
Gernot Marx
Peter A McCullough
Scott Mullaney
Marlies Ostermann
Thomas Rimmelé
Nathan I Shapiro
Andrew D Shaw
Jing Shi
Amy M Sprague
Jean-Louis Vincent
Christophe Vinsonneau
Ludwig Wagner
Michael G Walker
R Gentry Wilkerson
Kai Zacharowski
John A Kellum
Publication date
01-02-2013
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2013
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc12503

Other articles of this Issue 1/2013

Critical Care 1/2013 Go to the issue