Skip to main content
Top
Published in: Chinese Medicine 1/2019

Open Access 01-12-2019 | Pharmacokinetics | Research

Simultaneous UPLC–TQ-MS/MS determination of six active components in rat plasma: application in the pharmacokinetic study of Cyclocarya paliurus leaves

Authors: Zi-Wan Ning, Li-xiang Zhai, Jiao Peng, Ling Zhao, Tao Huang, Cheng-yuan Lin, Wei-hong Chen, Zhen Luo, Hai-tao Xiao, Zhao-xiang Bian

Published in: Chinese Medicine | Issue 1/2019

Login to get access

Abstract

Background

Cyclocarya paliurus (Batal.) Ijinskaja (CP) is a monotypic genus plant, also called sweet tea tree that belongs to the Juglandaceae family, which is mainly distributed in the subtropical highlands in China. Our previous work has verified that CP leaves exhibit a potent hyperglycemic effect by inhibiting pancreatic β cell apoptosis through the regulation of MPAK and Akt signaling pathways. However, the components that contribute to this potential health benefit remain undiscovered.

Method

A sensitive, reliable, and validated ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC–TQ-MS/MS) method was developed to simultaneously determine the presence of six active components (neochlorogenic acid, chlorogenic acid, quercetin-3-O-glucuronide, kaempferol-3-O-rhamnoside, quercetin, and kaempferol) in rat plasma after a single oral administration (in a dosage of 10.5 g/kg) of an extract of CP leaves to rats. The separation was performed on a Waters ACQUITY BEH C18 column (50 mm × 2.1 mm, 1.7 μm). The detection was conducted by multiple reaction monitoring (MRM) in negative ionization mode. The two highest abundant MRM transitions without interference were optimized for each analyte. Acetonitrile and formic acid aqueous solution (0.1%) was used as the mobile phase at a flow rate of 0.3 ml/min.

Result

The precision, accuracy, and recovery all satisfied the criteria of international guidance (Bioanalytical Method Validation Guidance for Industry, Food and Drug Administration), and the analytes were stable in plasma for all tested conditions. The main pharmacokinetic parameters were calculated by plasma concentration versus time profiles using the pharmacokinetics program.

Conclusion

The pharmacokinetic parameters of each compound can facilitate future clinical studies.
Literature
1.
go back to reference Zhai L, Ning ZW, Huang T, Wen B, Liao CH, Lin CY, et al. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: a lipidomics-based network pharmacology study. Front Pharmacol. 2018;9:973–85.CrossRef Zhai L, Ning ZW, Huang T, Wen B, Liao CH, Lin CY, et al. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: a lipidomics-based network pharmacology study. Front Pharmacol. 2018;9:973–85.CrossRef
2.
go back to reference Ma YL, Jiang CH, Yao N, Li Y, Wang QQ, Fang SZ, et al. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice. J Ethnopharmacol. 2015;166:286–96.CrossRef Ma YL, Jiang CH, Yao N, Li Y, Wang QQ, Fang SZ, et al. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice. J Ethnopharmacol. 2015;166:286–96.CrossRef
3.
go back to reference Cao Y, Fang S, Yin Z, Fu X, Shang X, Yang W, et al. Chemical fingerprint and multicomponent quantitative analysis for the quality evaluation of Cyclocarya paliurus leaves by HPLC-Q-TOF-MS. Molecules. 2017;22(11):1927–43.CrossRef Cao Y, Fang S, Yin Z, Fu X, Shang X, Yang W, et al. Chemical fingerprint and multicomponent quantitative analysis for the quality evaluation of Cyclocarya paliurus leaves by HPLC-Q-TOF-MS. Molecules. 2017;22(11):1927–43.CrossRef
4.
go back to reference Xiao HT, Wen B, Ning ZW, Zhai LX, Liao CH, Lin CY, et al. Cyclocarya paliurus tea leaves enhances pancreatic beta cell preservation through inhibition of apoptosis. Sci Rep. 2017;7:9155–68.CrossRef Xiao HT, Wen B, Ning ZW, Zhai LX, Liao CH, Lin CY, et al. Cyclocarya paliurus tea leaves enhances pancreatic beta cell preservation through inhibition of apoptosis. Sci Rep. 2017;7:9155–68.CrossRef
5.
go back to reference Li XN, Zhang A, Wang M, Sun H, Liu Z, Qiu S, et al. Screening the active compounds of Phellodendri Amurensis cortex for treating prostate cancer by high-throughput chinmedomics. Sci Rep. 2017;7:46234–49.CrossRef Li XN, Zhang A, Wang M, Sun H, Liu Z, Qiu S, et al. Screening the active compounds of Phellodendri Amurensis cortex for treating prostate cancer by high-throughput chinmedomics. Sci Rep. 2017;7:46234–49.CrossRef
6.
go back to reference Bao LP, Li JS, Zha DQ, Zhang L, Gao P, Yao T, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-kappa B pathways. Int Immunopharmacol. 2018;54:245–53.CrossRef Bao LP, Li JS, Zha DQ, Zhang L, Gao P, Yao T, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-kappa B pathways. Int Immunopharmacol. 2018;54:245–53.CrossRef
7.
go back to reference Hwang SH, Kwon SH, Kim SB, Lim SS. Inhibitory activities of Stauntonia hexaphylla Leaf constituents on rat lens aldose reductase and formation of advanced glycation end products and antioxidant. Biomed Res Int. 2017;2017:4273257.PubMedPubMedCentral Hwang SH, Kwon SH, Kim SB, Lim SS. Inhibitory activities of Stauntonia hexaphylla Leaf constituents on rat lens aldose reductase and formation of advanced glycation end products and antioxidant. Biomed Res Int. 2017;2017:4273257.PubMedPubMedCentral
8.
go back to reference Huang DW, Chang WC, Wu JSB, Shih RW, Shen SC. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res. 2016;36(2):150–60.CrossRef Huang DW, Chang WC, Wu JSB, Shih RW, Shen SC. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res. 2016;36(2):150–60.CrossRef
9.
go back to reference Kittl M, Beyreis M, Tumurkhuu M, Furst J, Helm K, Pitschmann A, et al. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem. 2016;39(1):278–93.CrossRef Kittl M, Beyreis M, Tumurkhuu M, Furst J, Helm K, Pitschmann A, et al. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem. 2016;39(1):278–93.CrossRef
10.
go back to reference Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670(1):325–32.CrossRef Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670(1):325–32.CrossRef
11.
go back to reference Kim OK, Jun W, Lee J. Effect of Cudrania tricuspidata and Kaempferol in endoplasmic reticulum stress-induced inflammation and hepatic insulin resistance in HepG2 cells. Nutrients. 2016;8(1):60–73.CrossRef Kim OK, Jun W, Lee J. Effect of Cudrania tricuspidata and Kaempferol in endoplasmic reticulum stress-induced inflammation and hepatic insulin resistance in HepG2 cells. Nutrients. 2016;8(1):60–73.CrossRef
12.
go back to reference Mehta V, Parashar A, Sharma A, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression. Horm Behav. 2017;89:13–22.CrossRef Mehta V, Parashar A, Sharma A, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression. Horm Behav. 2017;89:13–22.CrossRef
13.
go back to reference Sohretoglu D, Sari S, Barut B, Ozel A. Discovery of potent alpha-glucosidase inhibitor flavonols: insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg Chem. 2018;79:257–64.CrossRef Sohretoglu D, Sari S, Barut B, Ozel A. Discovery of potent alpha-glucosidase inhibitor flavonols: insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg Chem. 2018;79:257–64.CrossRef
14.
go back to reference Guo XD, Zhang DY, Gao XJ, Parry J, Liu K, Liu BL, et al. Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol Nutr Food Res. 2013;57(6):1037–45.CrossRef Guo XD, Zhang DY, Gao XJ, Parry J, Liu K, Liu BL, et al. Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol Nutr Food Res. 2013;57(6):1037–45.CrossRef
15.
go back to reference Wang HJ, Fowler MI, Messenger DJ, Terry LA, Gu XL, Zhou LX, et al. Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the glucose-lowering properties of Polygonatum odoratum. J Agr Food Chem. 2018;66:3137–45.CrossRef Wang HJ, Fowler MI, Messenger DJ, Terry LA, Gu XL, Zhou LX, et al. Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the glucose-lowering properties of Polygonatum odoratum. J Agr Food Chem. 2018;66:3137–45.CrossRef
16.
go back to reference Zhao H, Zhang Y, Guo Y, Shi S. Identification of major α-glucosidase inhibitors in Radix Astragali and its human microsomal metabolites using ultrafiltration HPLC–DAD–MSn. J Pharm Biomed Anal. 2015;104:31–7.CrossRef Zhao H, Zhang Y, Guo Y, Shi S. Identification of major α-glucosidase inhibitors in Radix Astragali and its human microsomal metabolites using ultrafiltration HPLC–DAD–MSn. J Pharm Biomed Anal. 2015;104:31–7.CrossRef
17.
go back to reference Yang J-R, Luo J-G, Kong L-Y. Determination of α-glucosidase inhibitors from Scut Scutellaria baicalensis using liquid chromatography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration. Chin J Nat Med. 2015;13(3):208–14.PubMed Yang J-R, Luo J-G, Kong L-Y. Determination of α-glucosidase inhibitors from Scut Scutellaria baicalensis using liquid chromatography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration. Chin J Nat Med. 2015;13(3):208–14.PubMed
18.
go back to reference He K, Song S, Zou Z, Feng M, Wang D, Wang Y, et al. The hypoglycemic and synergistic effect of loganin, morroniside, and ursolic acid isolated from the fruits of Cornus officinalis. Phytother Res. 2016;30(2):283–91.CrossRef He K, Song S, Zou Z, Feng M, Wang D, Wang Y, et al. The hypoglycemic and synergistic effect of loganin, morroniside, and ursolic acid isolated from the fruits of Cornus officinalis. Phytother Res. 2016;30(2):283–91.CrossRef
19.
go back to reference Ramachandran V, Saravanan R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol. 2015;34(9):884–93.CrossRef Ramachandran V, Saravanan R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol. 2015;34(9):884–93.CrossRef
20.
go back to reference Zhou W, Tam KY, Meng M, Shan J, Wang S, Ju W, et al. Pharmacokinetics screening for multi-components absorbed in the rat plasma after oral administration of traditional Chinese medicine Flos Lonicerae Japonicae-Fructus Forsythiae herb couple by sequential negative and positive ionization ultra-high-performance liquid chromatography/tandem triple quadrupole mass spectrometric detection. J Chromatogr A. 2015;1376:84–97.CrossRef Zhou W, Tam KY, Meng M, Shan J, Wang S, Ju W, et al. Pharmacokinetics screening for multi-components absorbed in the rat plasma after oral administration of traditional Chinese medicine Flos Lonicerae Japonicae-Fructus Forsythiae herb couple by sequential negative and positive ionization ultra-high-performance liquid chromatography/tandem triple quadrupole mass spectrometric detection. J Chromatogr A. 2015;1376:84–97.CrossRef
21.
go back to reference Konishi Y, Kobayashi S. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers. J Agric Food Chem. 2004;52(9):2518–26.CrossRef Konishi Y, Kobayashi S. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers. J Agric Food Chem. 2004;52(9):2518–26.CrossRef
22.
go back to reference Zeng H-J, Yang R, Guo C, Wang Q-W, Qu L-B, Li J-J. Pharmacokinetic study of six flavones in rat plasma and tissues after oral administration of ‘JiangYaBiFeng’ using SPE-HPLC–DAD. J Pharm Biomed Anal. 2011;56(4):815–9.CrossRef Zeng H-J, Yang R, Guo C, Wang Q-W, Qu L-B, Li J-J. Pharmacokinetic study of six flavones in rat plasma and tissues after oral administration of ‘JiangYaBiFeng’ using SPE-HPLC–DAD. J Pharm Biomed Anal. 2011;56(4):815–9.CrossRef
23.
go back to reference Schneider H, Schwiertz A, Collins MD, Blaut M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol. 1999;171(2):81–91.CrossRef Schneider H, Schwiertz A, Collins MD, Blaut M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol. 1999;171(2):81–91.CrossRef
24.
go back to reference Boonpawa R, Moradi N, Spenkelink A, Rietjens IM, Punt A. Use of physiologically based kinetic (PBK) modeling to study interindividual human variation and species differences in plasma concentrations of quercetin and its metabolites. Biochem Pharmacol. 2015;98(4):690–702.CrossRef Boonpawa R, Moradi N, Spenkelink A, Rietjens IM, Punt A. Use of physiologically based kinetic (PBK) modeling to study interindividual human variation and species differences in plasma concentrations of quercetin and its metabolites. Biochem Pharmacol. 2015;98(4):690–702.CrossRef
25.
go back to reference Mata-Bilbao Mde L, Andres-Lacueva C, Roura E, Jauregui O, Escribano E, Torre C, et al. Absorption and pharmacokinetics of green tea catechins in beagles. Br J Nutr. 2008;100(3):496–502.CrossRef Mata-Bilbao Mde L, Andres-Lacueva C, Roura E, Jauregui O, Escribano E, Torre C, et al. Absorption and pharmacokinetics of green tea catechins in beagles. Br J Nutr. 2008;100(3):496–502.CrossRef
26.
go back to reference Jia M-Q, Xiong Y-J, Xue Y, Wang Y, Yan C. Using UPLC-MS/MS for characterization of active components in extracts of Yupingfeng and application to a comparative pharmacokinetic study in rat plasma after oral administration. Molecules. 2017;22(5):810–27.CrossRef Jia M-Q, Xiong Y-J, Xue Y, Wang Y, Yan C. Using UPLC-MS/MS for characterization of active components in extracts of Yupingfeng and application to a comparative pharmacokinetic study in rat plasma after oral administration. Molecules. 2017;22(5):810–27.CrossRef
Metadata
Title
Simultaneous UPLC–TQ-MS/MS determination of six active components in rat plasma: application in the pharmacokinetic study of Cyclocarya paliurus leaves
Authors
Zi-Wan Ning
Li-xiang Zhai
Jiao Peng
Ling Zhao
Tao Huang
Cheng-yuan Lin
Wei-hong Chen
Zhen Luo
Hai-tao Xiao
Zhao-xiang Bian
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2019
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-019-0248-7

Other articles of this Issue 1/2019

Chinese Medicine 1/2019 Go to the issue