Skip to main content
Top
Published in: Current Heart Failure Reports 2/2010

Open Access 01-06-2010

Pharmacoepigenetics in Heart Failure

Authors: Irene Mateo Leach, Pim van der Harst, Rudolf A. de Boer

Published in: Current Heart Failure Reports | Issue 2/2010

Login to get access

Abstract

Epigenetics studies inheritable changes of genes and gene expression that do not concern DNA nucleotide variation. Such modifications include DNA methylation, several forms of histone modification, and microRNAs. From recent studies, we know not only that genetic changes account for heritable phenotypic variation, but that epigenetic changes also play an important role in the variation of predisposition to disease and to drug response. In this review, we discuss recent evidence of epigenetic changes that play an important role in the development of cardiac hypertrophy and heart failure and may dictate response to therapy.
Literature
1.
go back to reference de Boer RA, van der Harst P, van Veldhuisen DJ, MP van den Berg: Pharmacogenetics in heart failure: promises and challenges. Expert Opin Pharmacother 2009, 10:1713–1725.CrossRefPubMed de Boer RA, van der Harst P, van Veldhuisen DJ, MP van den Berg: Pharmacogenetics in heart failure: promises and challenges. Expert Opin Pharmacother 2009, 10:1713–1725.CrossRefPubMed
2.
go back to reference Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.CrossRef Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.CrossRef
3.
go back to reference Codd V, Mangino M, van der Harst P, et al.: Common variants near TERC are associated with mean telomere length. Nat Genet 2010, 42:197–199.CrossRefPubMed Codd V, Mangino M, van der Harst P, et al.: Common variants near TERC are associated with mean telomere length. Nat Genet 2010, 42:197–199.CrossRefPubMed
4.
go back to reference Newton-Cheh C, Johnson T, Gateva V, et al.: Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009, 41:666–676.CrossRef Newton-Cheh C, Johnson T, Gateva V, et al.: Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009, 41:666–676.CrossRef
6.
go back to reference Margulies KB, Bednarik DP, Dries DL: Genomics, transcriptional profiling, and heart failure. J Am Coll Cardiol 2009, 53:1752–1759.CrossRefPubMed Margulies KB, Bednarik DP, Dries DL: Genomics, transcriptional profiling, and heart failure. J Am Coll Cardiol 2009, 53:1752–1759.CrossRefPubMed
7.
go back to reference Szyf M: Toward a discipline of pharmacoepigenomics. Curr Pharmacogenomics 2004, 2:357–377.CrossRef Szyf M: Toward a discipline of pharmacoepigenomics. Curr Pharmacogenomics 2004, 2:357–377.CrossRef
8.
go back to reference Peedicadyl J: Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics 2008, 9:1785–1786.CrossRef Peedicadyl J: Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics 2008, 9:1785–1786.CrossRef
9.
go back to reference Ingelman-Sundberg M, Sima SC, Gomez A, Rodriguez-Antona C: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Therapeut 2007, 116:496–526.CrossRef Ingelman-Sundberg M, Sima SC, Gomez A, Rodriguez-Antona C: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Therapeut 2007, 116:496–526.CrossRef
10.
go back to reference • Mano H: Epigenetic abnormalities in cardiac hypertrophy and heart failure. Environ Health Prev Med 2008, 13:25–29. This review offers a good overview of histone acetylation in relation to HF.CrossRefPubMed • Mano H: Epigenetic abnormalities in cardiac hypertrophy and heart failure. Environ Health Prev Med 2008, 13:25–29. This review offers a good overview of histone acetylation in relation to HF.CrossRefPubMed
11.
go back to reference Bernstein BE, Meissner A, Lander ES: Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005, 120:169–181.CrossRefPubMed Bernstein BE, Meissner A, Lander ES: Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005, 120:169–181.CrossRefPubMed
12.
go back to reference Zhang CL, McKinsey TA, Chang S, et al.: Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002 110:479–488.CrossRefPubMed Zhang CL, McKinsey TA, Chang S, et al.: Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002 110:479–488.CrossRefPubMed
13.
go back to reference Trivedi CM, Luo Y, Yin Z, et al.: Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 2007, 13:324–331.CrossRefPubMed Trivedi CM, Luo Y, Yin Z, et al.: Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 2007, 13:324–331.CrossRefPubMed
15.
go back to reference Peaston AE, Whitelaw E: Epigenetics and phenotypic variation in mammals. Mamm Genome 2006, 17:365–374.CrossRefPubMed Peaston AE, Whitelaw E: Epigenetics and phenotypic variation in mammals. Mamm Genome 2006, 17:365–374.CrossRefPubMed
16.
go back to reference Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006, 31:89–97.CrossRefPubMed Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006, 31:89–97.CrossRefPubMed
17.
go back to reference Ball MP, Li JB, Gao Y, et al.: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009, 27:361–368.CrossRefPubMed Ball MP, Li JB, Gao Y, et al.: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009, 27:361–368.CrossRefPubMed
18.
go back to reference Kao YH, Chen YC, Cheng CC, et al.: Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med 2010, 38:217–222.CrossRefPubMed Kao YH, Chen YC, Cheng CC, et al.: Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med 2010, 38:217–222.CrossRefPubMed
19.
go back to reference • Movassagh M, Choy M-K, Goddard M, et al.: Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 2010, 5:e8564. This study reports genome-wide evidence for differential methylation between CVD patients and controls.CrossRefPubMed • Movassagh M, Choy M-K, Goddard M, et al.: Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 2010, 5:e8564. This study reports genome-wide evidence for differential methylation between CVD patients and controls.CrossRefPubMed
20.
go back to reference Schroen B, Heymans S: MicroRNAs and beyond: the heart reveals its treasures. Hypertension 2009, 54:1189–1194.CrossRefPubMed Schroen B, Heymans S: MicroRNAs and beyond: the heart reveals its treasures. Hypertension 2009, 54:1189–1194.CrossRefPubMed
21.
go back to reference • Silvestri P, Di Russo C, Rigattieri S, et al.: MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. Recent Pat Cardiovasc Drug Discov 2009, 4:109–118. This review offers a good compilation of evidence of miRNAs associated with HF.CrossRefPubMed • Silvestri P, Di Russo C, Rigattieri S, et al.: MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. Recent Pat Cardiovasc Drug Discov 2009, 4:109–118. This review offers a good compilation of evidence of miRNAs associated with HF.CrossRefPubMed
22.
go back to reference Carè A, Catalucci D, Felicetti F, et al.: MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007, 13:613–618.CrossRefPubMed Carè A, Catalucci D, Felicetti F, et al.: MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007, 13:613–618.CrossRefPubMed
23.
go back to reference Divakaran V, Mann DL: The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 2008, 103:1072–1083.CrossRefPubMed Divakaran V, Mann DL: The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 2008, 103:1072–1083.CrossRefPubMed
24.
go back to reference van Rooij E, Sutherland LB, Qi X, et al.: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007, 316:575–579.CrossRefPubMed van Rooij E, Sutherland LB, Qi X, et al.: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007, 316:575–579.CrossRefPubMed
25.
go back to reference Zhao Y, Ransom JF, Li A, et al.: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007, 129:303–317.CrossRefPubMed Zhao Y, Ransom JF, Li A, et al.: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007, 129:303–317.CrossRefPubMed
26.
go back to reference Thum T, Gross C, Fiedler J, et al.: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008, 456:980–984.CrossRefPubMed Thum T, Gross C, Fiedler J, et al.: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008, 456:980–984.CrossRefPubMed
27.
go back to reference Thum T, Galuppo P, Wolf C, et al.: MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007, 116:258–267.CrossRefPubMed Thum T, Galuppo P, Wolf C, et al.: MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007, 116:258–267.CrossRefPubMed
28.
go back to reference Zorio E, Medina P, Rueda J, et al.: Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets. Cardiovasc Hematol Agents Med Chem 2009, 7:82–90.CrossRefPubMed Zorio E, Medina P, Rueda J, et al.: Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets. Cardiovasc Hematol Agents Med Chem 2009, 7:82–90.CrossRefPubMed
29.
go back to reference Huang TH, Perry MR, Laux DE: Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 1999, 8:459–470.CrossRefPubMed Huang TH, Perry MR, Laux DE: Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 1999, 8:459–470.CrossRefPubMed
30.
go back to reference Kaneda R, Toyota M, Yamashita Y, et al.: High-throughput screening of genome fragments bound to differentially acetylated histones. Genes Cells 2004, 9:1167–1174.CrossRefPubMed Kaneda R, Toyota M, Yamashita Y, et al.: High-throughput screening of genome fragments bound to differentially acetylated histones. Genes Cells 2004, 9:1167–1174.CrossRefPubMed
31.
go back to reference Kaneda R, Ueno S, Yamashita Y, et al.: Genome-wide screening for target regions of histone deacetylases in cardiomyocytes. Circ Res 2005, 97:210–218.CrossRefPubMed Kaneda R, Ueno S, Yamashita Y, et al.: Genome-wide screening for target regions of histone deacetylases in cardiomyocytes. Circ Res 2005, 97:210–218.CrossRefPubMed
32.
go back to reference Soifer HS, Rossi JJ, Saetrom P: MicroRNAs in disease and potential therapeutic applications. Mol Ther 2007, 15:2070–2079.CrossRefPubMed Soifer HS, Rossi JJ, Saetrom P: MicroRNAs in disease and potential therapeutic applications. Mol Ther 2007, 15:2070–2079.CrossRefPubMed
33.
go back to reference Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447:433–440.CrossRefPubMed Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447:433–440.CrossRefPubMed
34.
go back to reference Pucéat M: Pharmacological approaches to regenerative strategies for the treatment of cardiovascular diseases. Curr Opin Pharmacol 2008, 8:189–192.CrossRefPubMed Pucéat M: Pharmacological approaches to regenerative strategies for the treatment of cardiovascular diseases. Curr Opin Pharmacol 2008, 8:189–192.CrossRefPubMed
35.
go back to reference Gomez A, Ingelman-Sundberg M: Pharmacoepigenetics: its role in interindividual differences in drug response. Clin Pharmacol Ther 2009, 85:226–230.CrossRef Gomez A, Ingelman-Sundberg M: Pharmacoepigenetics: its role in interindividual differences in drug response. Clin Pharmacol Ther 2009, 85:226–230.CrossRef
36.
go back to reference Bolden JE, Peart MJ, Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006, 5:769–784.CrossRefPubMed Bolden JE, Peart MJ, Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006, 5:769–784.CrossRefPubMed
37.
go back to reference Gallo P, Latronico MV, Gallo P, et al.: Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 2008, 80:416–424.CrossRefPubMed Gallo P, Latronico MV, Gallo P, et al.: Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 2008, 80:416–424.CrossRefPubMed
38.
39.
go back to reference Anway MD, Cupp AS, Uzumcu M, Skinner MK: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308:1466–1469.CrossRefPubMed Anway MD, Cupp AS, Uzumcu M, Skinner MK: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308:1466–1469.CrossRefPubMed
40.
go back to reference Turan N, Katari S, Coutifaris C, Sapienza C: Explaining inter-individual variability in phenotype: is epigenetics up to the challenge? Epigenetics 2010, 5:16–19.CrossRefPubMed Turan N, Katari S, Coutifaris C, Sapienza C: Explaining inter-individual variability in phenotype: is epigenetics up to the challenge? Epigenetics 2010, 5:16–19.CrossRefPubMed
41.
go back to reference Fraga MF, Ballestar E, Paz MF, et al.: Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005, 102:10604–10609.CrossRefPubMed Fraga MF, Ballestar E, Paz MF, et al.: Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005, 102:10604–10609.CrossRefPubMed
42.
go back to reference The American Association for Cancer Research Human Epigenome Task Force and European Union, Network of Excellence, Scientific Advisory Board: Moving AHEAD with an international human epigenome project. Nature 2008, 454:711–715.CrossRef The American Association for Cancer Research Human Epigenome Task Force and European Union, Network of Excellence, Scientific Advisory Board: Moving AHEAD with an international human epigenome project. Nature 2008, 454:711–715.CrossRef
43.
go back to reference Mishra PK, Tyagi N, Kumar M, Tyagi SC: MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 2009, 13:778–789.CrossRefPubMed Mishra PK, Tyagi N, Kumar M, Tyagi SC: MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 2009, 13:778–789.CrossRefPubMed
44.
go back to reference Chen JF, Murchison EP, Tang R, et al.: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008, 105:2111–2116.CrossRefPubMed Chen JF, Murchison EP, Tang R, et al.: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008, 105:2111–2116.CrossRefPubMed
45.
go back to reference Kwon C, Han Z, Olson EN, Srivastava D: MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 2005, 102:18986–18991.CrossRefPubMed Kwon C, Han Z, Olson EN, Srivastava D: MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 2005, 102:18986–18991.CrossRefPubMed
46.
go back to reference Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005, 436:214–220.CrossRefPubMed Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005, 436:214–220.CrossRefPubMed
47.
go back to reference Chen JF, Mandel EM, Thomson JM, et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38:228–233.CrossRefPubMed Chen JF, Mandel EM, Thomson JM, et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38:228–233.CrossRefPubMed
48.
go back to reference Yang B, Lin H, Xiao J, et al.: The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007, 13:486–491.CrossRefPubMed Yang B, Lin H, Xiao J, et al.: The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007, 13:486–491.CrossRefPubMed
49.
go back to reference Terentyev D, Belevych AE, Terentyeva R, et al.: miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56{alpha} and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 2009, 104:514–521.CrossRefPubMed Terentyev D, Belevych AE, Terentyeva R, et al.: miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56{alpha} and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 2009, 104:514–521.CrossRefPubMed
50.
go back to reference Luo X, Lin H, Pan Z, et al.: Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 2008, 283:20045–20052.CrossRefPubMed Luo X, Lin H, Pan Z, et al.: Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 2008, 283:20045–20052.CrossRefPubMed
51.
go back to reference Luo X, Xiao J, Lin H, et al.: Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 2007, 212:358–367.CrossRefPubMed Luo X, Xiao J, Lin H, et al.: Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 2007, 212:358–367.CrossRefPubMed
52.
go back to reference Ikeda S, He A, Kong SW, et al.: microRNA-1 negatively regulates expression of the hypertrophy-associated genes calmodulin and Mef2a. Mol Cell Biol 2009, 29:2193–2204.CrossRefPubMed Ikeda S, He A, Kong SW, et al.: microRNA-1 negatively regulates expression of the hypertrophy-associated genes calmodulin and Mef2a. Mol Cell Biol 2009, 29:2193–2204.CrossRefPubMed
53.
go back to reference Sayed D, Hong C, Chen IY, et al.: MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007, 100:416–424.CrossRefPubMed Sayed D, Hong C, Chen IY, et al.: MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007, 100:416–424.CrossRefPubMed
54.
go back to reference Xu C, Lu Y, Pan Z, et al.: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 2007, 120:3045–3052.CrossRefPubMed Xu C, Lu Y, Pan Z, et al.: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 2007, 120:3045–3052.CrossRefPubMed
55.
go back to reference Liu N, Bezprozvannaya S, Williams AH, et al.: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008, 22:3242–3254.CrossRefPubMed Liu N, Bezprozvannaya S, Williams AH, et al.: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008, 22:3242–3254.CrossRefPubMed
56.
go back to reference Duisters RF, Tijsen AJ, Schroen B, et al.: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009, 104:170–178.CrossRefPubMed Duisters RF, Tijsen AJ, Schroen B, et al.: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009, 104:170–178.CrossRefPubMed
57.
go back to reference Xiao J, Luo X, Lin H, et al.: MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 2007, 282:12363–12367.CrossRefPubMed Xiao J, Luo X, Lin H, et al.: MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 2007, 282:12363–12367.CrossRefPubMed
58.
go back to reference Sucharov C, Bristow MR, Port JD: miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 2008, 45:185–192.CrossRefPubMed Sucharov C, Bristow MR, Port JD: miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 2008, 45:185–192.CrossRefPubMed
Metadata
Title
Pharmacoepigenetics in Heart Failure
Authors
Irene Mateo Leach
Pim van der Harst
Rudolf A. de Boer
Publication date
01-06-2010
Publisher
Current Science Inc.
Published in
Current Heart Failure Reports / Issue 2/2010
Print ISSN: 1546-9530
Electronic ISSN: 1546-9549
DOI
https://doi.org/10.1007/s11897-010-0011-y

Other articles of this Issue 2/2010

Current Heart Failure Reports 2/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.