Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Pharmacodynamics | Research article

Optimal biological dose: a systematic review in cancer phase I clinical trials

Authors: J. Fraisse, D. Dinart, D. Tosi, C. Bellera, C. Mollevi

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Classical phase 1 dose-finding designs based on a single toxicity endpoint to assess the maximum tolerated dose were initially developed in the context of cytotoxic drugs. With the emergence of molecular targeted agents and immunotherapies, the concept of optimal biological dose (OBD) was subsequently introduced to account for efficacy in addition to toxicity. The objective was therefore to provide an overview of published phase 1 cancer clinical trials relying on the concept of OBD.

Methods

We performed a systematic review through a computerized search of the MEDLINE database to identify early phase cancer clinical trials that relied on OBD. Relevant publications were selected based on a two-step process by two independent readers. Relevant information (phase, type of therapeutic agents, objectives, endpoints and dose-finding design) were collected.

Results

We retrieved 37 articles. OBD was clearly mentioned as a trial objective (primary or secondary) for 22 articles and was traditionally defined as the smallest dose maximizing an efficacy criterion such as biological target: biological response, immune cells count for immunotherapies, or biological cell count for targeted therapies. Most trials considered a binary toxicity endpoint defined in terms of the proportion of patients who experienced a dose-limiting toxicity. Only two articles relied on an adaptive dose escalation design.

Conclusions

In practice, OBD should be a primary objective for the assessment of the recommended phase 2 dose (RP2D) for a targeted therapy or immunotherapy phase I cancer trial. Dose escalation designs have to be adapted accordingly to account for both efficacy and toxicity.
Appendix
Available only for authorised users
Literature
2.
go back to reference Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS. Phase I clinical trial design in cancer drug development. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:684–92.CrossRef Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS. Phase I clinical trial design in cancer drug development. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:684–92.CrossRef
3.
go back to reference Tosi D, Laghzali Y, Vinches M, Alexandre M, Homicsko K, Fasolo A, et al. Clinical development strategies and outcomes in first-in-human trials of monoclonal antibodies. J Clin Oncol. 2015;33:2158–65.PubMedCrossRef Tosi D, Laghzali Y, Vinches M, Alexandre M, Homicsko K, Fasolo A, et al. Clinical development strategies and outcomes in first-in-human trials of monoclonal antibodies. J Clin Oncol. 2015;33:2158–65.PubMedCrossRef
4.
go back to reference Paoletti X, Postel-Vinay S, Servois V, Doussau A, Ollivier L, Le Tourneau C. Dose finding methods for targeted agents: new perspectives. Bull Cancer (Paris). 2010;97:1485–95. Paoletti X, Postel-Vinay S, Servois V, Doussau A, Ollivier L, Le Tourneau C. Dose finding methods for targeted agents: new perspectives. Bull Cancer (Paris). 2010;97:1485–95.
5.
go back to reference O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics. 1990;46:33–48.PubMedCrossRef O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics. 1990;46:33–48.PubMedCrossRef
6.
go back to reference Piantadosi S, Liu G. Improved designs for dose escalation studies using pharmacokinetic measurements. Stat Med. 1996;15:1605–18.PubMedCrossRef Piantadosi S, Liu G. Improved designs for dose escalation studies using pharmacokinetic measurements. Stat Med. 1996;15:1605–18.PubMedCrossRef
7.
go back to reference Braun TM. The bivariate continual reassessment method. Extending the CRM to phase I trials of two competing outcomes. Control Clin Trials. 2002;23:240–56.PubMedCrossRef Braun TM. The bivariate continual reassessment method. Extending the CRM to phase I trials of two competing outcomes. Control Clin Trials. 2002;23:240–56.PubMedCrossRef
8.
go back to reference Bekele BN, Shen Y. A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial. Biometrics. 2005;61:343–54.PubMedCrossRef Bekele BN, Shen Y. A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial. Biometrics. 2005;61:343–54.PubMedCrossRef
9.
go back to reference Dragalin V, Fedorov V. Adaptive designs for dose-finding based on efficacy–toxicity response. J Stat Plan Inference. 2006;136:1800–23.CrossRef Dragalin V, Fedorov V. Adaptive designs for dose-finding based on efficacy–toxicity response. J Stat Plan Inference. 2006;136:1800–23.CrossRef
10.
go back to reference Dragalin V, Fedorov V, Wu Y. Adaptive designs for selecting drug combinations based on efficacy–toxicity response. J Stat Plan Inference. 2008;138:352–73.CrossRef Dragalin V, Fedorov V, Wu Y. Adaptive designs for selecting drug combinations based on efficacy–toxicity response. J Stat Plan Inference. 2008;138:352–73.CrossRef
11.
go back to reference Houede N, Thall PF, Nguyen H, Paoletti X, Kramar A. Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials. Biometrics. 2010;66:532–40.PubMedCrossRef Houede N, Thall PF, Nguyen H, Paoletti X, Kramar A. Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials. Biometrics. 2010;66:532–40.PubMedCrossRef
12.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement PLoS Med. 2009;6:e1000097.PubMed Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement PLoS Med. 2009;6:e1000097.PubMed
13.
go back to reference PRISMA-P Group, Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.PubMedCentralCrossRef PRISMA-P Group, Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.PubMedCentralCrossRef
14.
go back to reference Recchia F, De Filippis S, Rosselli M, Saggio G, Cesta A, Fumagalli L, et al. Phase 1B study of subcutaneously administered interleukin 2 in combination with 13-cis retinoic acid as maintenance therapy in advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7:1251–7. Recchia F, De Filippis S, Rosselli M, Saggio G, Cesta A, Fumagalli L, et al. Phase 1B study of subcutaneously administered interleukin 2 in combination with 13-cis retinoic acid as maintenance therapy in advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7:1251–7.
15.
go back to reference Parihar R. A phase I study of interleukin 12 with Trastuzumab in patients with human epidermal growth factor Receptor-2-overexpressing malignancies: analysis of sustained interferon production in a subset of patients. Clin Cancer Res. 2004;10:5027–37.PubMedCrossRef Parihar R. A phase I study of interleukin 12 with Trastuzumab in patients with human epidermal growth factor Receptor-2-overexpressing malignancies: analysis of sustained interferon production in a subset of patients. Clin Cancer Res. 2004;10:5027–37.PubMedCrossRef
16.
go back to reference Wages NA, Slingluff CL, Petroni GR. A phase I/II adaptive design to determine the optimal treatment regimen from a set of combination immunotherapies in high-risk melanoma. Contemp Clin Trials. 2015;41:172–9.PubMedPubMedCentralCrossRef Wages NA, Slingluff CL, Petroni GR. A phase I/II adaptive design to determine the optimal treatment regimen from a set of combination immunotherapies in high-risk melanoma. Contemp Clin Trials. 2015;41:172–9.PubMedPubMedCentralCrossRef
17.
go back to reference Cebon J, Jäger E, Shackleton MJ, Gibbs P, Davis ID, Hopkins W, et al. Two phase I studies of low dose recombinant human IL-12 with Melan-a and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun. 2003;3:7.PubMed Cebon J, Jäger E, Shackleton MJ, Gibbs P, Davis ID, Hopkins W, et al. Two phase I studies of low dose recombinant human IL-12 with Melan-a and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun. 2003;3:7.PubMed
18.
go back to reference Yau T, Cheng PN, Chan P, Chan W, Chen L, Yuen J, et al. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (peg-rhArg1) in patients with advanced hepatocellular carcinoma. Investig New Drugs. 2013;31:99–107.CrossRef Yau T, Cheng PN, Chan P, Chan W, Chen L, Yuen J, et al. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (peg-rhArg1) in patients with advanced hepatocellular carcinoma. Investig New Drugs. 2013;31:99–107.CrossRef
19.
go back to reference Wolchok JD, Williams L, Pinto JT, Fleisher M, Krown SE, Hwu W-J, et al. Phase I trial of high dose paracetamol and carmustine in patients with metastatic melanoma. Melanoma Res. 2003;13:189–96.PubMedCrossRef Wolchok JD, Williams L, Pinto JT, Fleisher M, Krown SE, Hwu W-J, et al. Phase I trial of high dose paracetamol and carmustine in patients with metastatic melanoma. Melanoma Res. 2003;13:189–96.PubMedCrossRef
20.
go back to reference Geevarghese SK, Geller DA, de Haan HA, Hörer M, Knoll AE, Mescheder A, et al. Phase I/II study of Oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal Cancer metastatic to the liver. Hum Gene Ther. 2010;21:1119–28.PubMedPubMedCentralCrossRef Geevarghese SK, Geller DA, de Haan HA, Hörer M, Knoll AE, Mescheder A, et al. Phase I/II study of Oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal Cancer metastatic to the liver. Hum Gene Ther. 2010;21:1119–28.PubMedPubMedCentralCrossRef
21.
go back to reference Miyamoto T, Yamamoto N, Nishimura H, Koto M, Tsujii H, Mizoe J, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol. 2003;66:127–40.PubMedCrossRef Miyamoto T, Yamamoto N, Nishimura H, Koto M, Tsujii H, Mizoe J, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol. 2003;66:127–40.PubMedCrossRef
22.
go back to reference Combs SE, Habermehl D, Ganten T, Schmidt J, Edler L, Burkholder I, et al. Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: the PROMETHEUS-01 trial. BMC Cancer. 2011;11. https://doi.org/10.1186/1471-2407-11-67. Combs SE, Habermehl D, Ganten T, Schmidt J, Edler L, Burkholder I, et al. Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: the PROMETHEUS-01 trial. BMC Cancer. 2011;11. https://​doi.​org/​10.​1186/​1471-2407-11-67.
23.
go back to reference Makishima H, Yasuda S, Isozaki Y, Kasuya G, Okada N, Miyazaki M, et al. Single fraction carbon ion radiotherapy for colorectal cancer liver metastasis: A dose escalation study. Cancer Sci. 2018; cas.13872. Makishima H, Yasuda S, Isozaki Y, Kasuya G, Okada N, Miyazaki M, et al. Single fraction carbon ion radiotherapy for colorectal cancer liver metastasis: A dose escalation study. Cancer Sci. 2018; cas.13872.
24.
go back to reference Van Den Neste E, Cazin B, Janssens A, González-Barca E, Terol MJ, Levy V, et al. Acadesine for patients with relapsed/refractory chronic lymphocytic leukemia (CLL): a multicenter phase I/II study. Cancer Chemother Pharmacol. 2013;71:581–91.CrossRef Van Den Neste E, Cazin B, Janssens A, González-Barca E, Terol MJ, Levy V, et al. Acadesine for patients with relapsed/refractory chronic lymphocytic leukemia (CLL): a multicenter phase I/II study. Cancer Chemother Pharmacol. 2013;71:581–91.CrossRef
25.
go back to reference Wages NA, Portell CA, Williams ME, Conaway MR, Petroni GR. Implementation of a model-based Design in a Phase Ib Study of combined targeted agents. Clin Cancer Res. 2017;23:7158–64.PubMedPubMedCentralCrossRef Wages NA, Portell CA, Williams ME, Conaway MR, Petroni GR. Implementation of a model-based Design in a Phase Ib Study of combined targeted agents. Clin Cancer Res. 2017;23:7158–64.PubMedPubMedCentralCrossRef
26.
go back to reference Rodgers KE, Oliver J, di Zerega GS. Phase I/II dose escalation study of angiotensin 1–7 [A(1–7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol. 2006;57:559–68.PubMedCrossRef Rodgers KE, Oliver J, di Zerega GS. Phase I/II dose escalation study of angiotensin 1–7 [A(1–7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol. 2006;57:559–68.PubMedCrossRef
27.
go back to reference Cassier PA, Italiano A, Gomez-Roca CA, Le Tourneau C, Toulmonde M, Cannarile MA, et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 2015;16:949–56.PubMedCrossRef Cassier PA, Italiano A, Gomez-Roca CA, Le Tourneau C, Toulmonde M, Cannarile MA, et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 2015;16:949–56.PubMedCrossRef
28.
go back to reference Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C, Broxmeyer HE, Kudelka AP, Freedman RS, et al. Recombinant human Thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic Cancer. Ann Intern Med. 2000;132:364.PubMedCrossRef Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C, Broxmeyer HE, Kudelka AP, Freedman RS, et al. Recombinant human Thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic Cancer. Ann Intern Med. 2000;132:364.PubMedCrossRef
29.
go back to reference Mammoliti S, Andretta V, Bennicelli E, Caprioni F, Comandini D, Fornarini G, et al. Two doses of NGR-hTNF in combination with capecitabine plus oxaliplatin in colorectal cancer patients failing standard therapies. Ann Oncol. 2011;22:973–8.PubMedCrossRef Mammoliti S, Andretta V, Bennicelli E, Caprioni F, Comandini D, Fornarini G, et al. Two doses of NGR-hTNF in combination with capecitabine plus oxaliplatin in colorectal cancer patients failing standard therapies. Ann Oncol. 2011;22:973–8.PubMedCrossRef
30.
go back to reference Chawla SP, Staddon A, Hendifar A, Messam CA, Patwardhan R, Kamel YYM. Results of a phase I dose escalation study of eltrombopag in patients with advanced soft tissue sarcoma receiving doxorubicin and ifosfamide. BMC Cancer. 2013;13. https://doi.org/10.1186/1471-2407-13-121. Chawla SP, Staddon A, Hendifar A, Messam CA, Patwardhan R, Kamel YYM. Results of a phase I dose escalation study of eltrombopag in patients with advanced soft tissue sarcoma receiving doxorubicin and ifosfamide. BMC Cancer. 2013;13. https://​doi.​org/​10.​1186/​1471-2407-13-121.
31.
go back to reference Gregorc V, Citterio G, Vitali G, Spreafico A, Scifo P, Borri A, et al. Defining the optimal biological dose of NGR-hTNF, a selective vascular targeting agent, in advanced solid tumours. Eur J Cancer. 2010;46:198–206.PubMedCrossRef Gregorc V, Citterio G, Vitali G, Spreafico A, Scifo P, Borri A, et al. Defining the optimal biological dose of NGR-hTNF, a selective vascular targeting agent, in advanced solid tumours. Eur J Cancer. 2010;46:198–206.PubMedCrossRef
32.
go back to reference Hariharan S, Gustafson D, Holden S, McConkey D, Davis D, Morrow M, et al. Assessment of the biological and pharmacological effects of the ανβ3 and ανβ5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann Oncol. 2007;18:1400–7.PubMedCrossRef Hariharan S, Gustafson D, Holden S, McConkey D, Davis D, Morrow M, et al. Assessment of the biological and pharmacological effects of the ανβ3 and ανβ5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann Oncol. 2007;18:1400–7.PubMedCrossRef
33.
go back to reference Reckamp KL. A phase I trial to determine the optimal biological dose of Celecoxib when combined with Erlotinib in advanced non-small cell lung Cancer. Clin Cancer Res. 2006;12:3381–8.PubMedCrossRef Reckamp KL. A phase I trial to determine the optimal biological dose of Celecoxib when combined with Erlotinib in advanced non-small cell lung Cancer. Clin Cancer Res. 2006;12:3381–8.PubMedCrossRef
34.
go back to reference Jamieson D, Griffin MJ, Sludden J, Drew Y, Cresti N, Swales K, et al. A phase I pharmacokinetic and pharmacodynamic study of the oral mitogen-activated protein kinase kinase (MEK) inhibitor, WX-554, in patients with advanced solid tumours. Eur J Cancer. 2016;68:1–10.PubMedCrossRef Jamieson D, Griffin MJ, Sludden J, Drew Y, Cresti N, Swales K, et al. A phase I pharmacokinetic and pharmacodynamic study of the oral mitogen-activated protein kinase kinase (MEK) inhibitor, WX-554, in patients with advanced solid tumours. Eur J Cancer. 2016;68:1–10.PubMedCrossRef
36.
37.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRef Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRef
38.
go back to reference Colin P, Delattre M, Minini P, Micallef S. An escalation for bivariate binary endpoints controlling the risk of Overtoxicity (EBE-CRO): managing efficacy and toxicity in early oncology clinical trials. J Biopharm Stat. 2017;27:1054–72.PubMedCrossRef Colin P, Delattre M, Minini P, Micallef S. An escalation for bivariate binary endpoints controlling the risk of Overtoxicity (EBE-CRO): managing efficacy and toxicity in early oncology clinical trials. J Biopharm Stat. 2017;27:1054–72.PubMedCrossRef
39.
go back to reference Altzerinakou M-A, Paoletti X. An adaptive design for the identification of the optimal dose using joint modeling of continuous repeated biomarker measurements and time-to-toxicity in phase I/II clinical trials in oncology. Stat Methods Med Res. 2019;096228021983773. Altzerinakou M-A, Paoletti X. An adaptive design for the identification of the optimal dose using joint modeling of continuous repeated biomarker measurements and time-to-toxicity in phase I/II clinical trials in oncology. Stat Methods Med Res. 2019;096228021983773.
40.
go back to reference Cook N, Hansen AR, Siu LL, Abdul Razak AR. Early phase clinical trials to identify optimal dosing and safety. Mol Oncol. 2015;9:997–1007.PubMedCrossRef Cook N, Hansen AR, Siu LL, Abdul Razak AR. Early phase clinical trials to identify optimal dosing and safety. Mol Oncol. 2015;9:997–1007.PubMedCrossRef
Metadata
Title
Optimal biological dose: a systematic review in cancer phase I clinical trials
Authors
J. Fraisse
D. Dinart
D. Tosi
C. Bellera
C. Mollevi
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07782-z

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine