Skip to main content
Top
Published in: American Journal of Cardiovascular Drugs 4/2006

01-07-2006 | Review Article

Peroxisome Proliferator-Activated Receptor-γ Agonists for Management and Prevention of Vascular Disease in Patients with and without Diabetes Mellitus

Authors: Ramón Ríos-Vázquez, Raquel Marzoa-Rivas, Ignacio Gil-Ortega, Professor Juan Carlos Kaski

Published in: American Journal of Cardiovascular Drugs | Issue 4/2006

Login to get access

Abstract

Inflammation is known to have a pathogenic role in atherosclerosis and the genesis of acute coronary syndromes. The peroxisome proliferator-activated receptor (PPAR)-γ, which is expressed in many constituent cells of atheromatous plaques, inhibits the activation of several proinflammatory genes responsible for atheromatous plaque development and maturation. Agonists of this receptor, such as rosiglitazone and pioglitazone, are currently available for the treatment of type 2 diabetes mellitus, and several lines of evidence have shown that these drugs have antiatherogenic effects. Insulin resistance is associated with inflammation and has a key role in atherogenesis. The antiatherogenic and insulin sensitizing effects of the thiazolidinediones in patients with type 2 diabetes mellitus may be associated with this action. However, in recent years there has been growing evidence that the antiatherogenic effects of PPAR-γ agonists are not confined to patients with diabetes mellitus. PPAR-γ agonists have been shown to downregulate the expression of endothelial activation markers, reduce circulating platelet activity, improve flow-mediated dilatation and attenuate atheromatous plaque progression in patients without diabetes mellitus. These effects of PPAR-γ agonists appear to result from both insulin sensitization and a direct modulation of transcriptional activity in the vessel wall. This review summarizes the current understanding of the role of PPAR-γ agonists in atherogenesis and discusses their potential role in the treatment of coronary artery disease in patients with type 2 diabetes mellitus and in nondiabetic patients.
Literature
1.
go back to reference Levi F, Lucchini F, Negri E, et al. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world. Heart 2002; 88: 119–24.PubMedCrossRef Levi F, Lucchini F, Negri E, et al. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world. Heart 2002; 88: 119–24.PubMedCrossRef
3.
4.
go back to reference Haffner SM, Miettinen H. Insulin resistance implications for type II diabetes mellitus and coronary heart disease. Am J Med 1997; 103: 152–62.PubMedCrossRef Haffner SM, Miettinen H. Insulin resistance implications for type II diabetes mellitus and coronary heart disease. Am J Med 1997; 103: 152–62.PubMedCrossRef
5.
go back to reference Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153: 17–23.PubMedCrossRef Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153: 17–23.PubMedCrossRef
6.
go back to reference Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95: 7614–9.PubMedCrossRef Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95: 7614–9.PubMedCrossRef
7.
go back to reference Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, — beta, and -gamma in the adult rat. Endocrinology 1996; 137: 354–66.PubMedCrossRef Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, — beta, and -gamma in the adult rat. Endocrinology 1996; 137: 354–66.PubMedCrossRef
8.
9.
go back to reference Torra IP, Chinetti G, Duval C, et al. Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 2001; 12: 245–54.PubMedCrossRef Torra IP, Chinetti G, Duval C, et al. Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 2001; 12: 245–54.PubMedCrossRef
10.
go back to reference Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 645–50.PubMedCrossRef Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 645–50.PubMedCrossRef
11.
go back to reference Keller H, Dreyer C, Medin J, et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 1993; 90: 2160–4.PubMedCrossRef Keller H, Dreyer C, Medin J, et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 1993; 90: 2160–4.PubMedCrossRef
12.
go back to reference Desvergne B, Wahli W. PPAR: a key nuclear factor in nutrient/gene interactions? In: Bauerle I, editor. Inducible transcription. Boston (MA): Birkhauser, 1995: 142–76. Desvergne B, Wahli W. PPAR: a key nuclear factor in nutrient/gene interactions? In: Bauerle I, editor. Inducible transcription. Boston (MA): Birkhauser, 1995: 142–76.
13.
go back to reference Miyata KS, McCaw SE, Marcus SL, et al. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene 1994; 148: 327–30.PubMedCrossRef Miyata KS, McCaw SE, Marcus SL, et al. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene 1994; 148: 327–30.PubMedCrossRef
14.
16.
go back to reference Tontonoz P, Hu E, Graves RA, et al. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–34.PubMedCrossRef Tontonoz P, Hu E, Graves RA, et al. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–34.PubMedCrossRef
17.
go back to reference Nedergaard J, Petrovic N, Lindgren EM, et al. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 2005; 1740: 293–304.PubMedCrossRef Nedergaard J, Petrovic N, Lindgren EM, et al. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 2005; 1740: 293–304.PubMedCrossRef
18.
go back to reference Tontonoz P, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79: 1147–56.PubMedCrossRef Tontonoz P, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79: 1147–56.PubMedCrossRef
19.
go back to reference Wilson TM, Brown PJ, Strenbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43: 527–50.CrossRef Wilson TM, Brown PJ, Strenbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43: 527–50.CrossRef
20.
go back to reference Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953–6.PubMedCrossRef Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953–6.PubMedCrossRef
22.
go back to reference Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45: 1661–9.PubMedCrossRef Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45: 1661–9.PubMedCrossRef
23.
go back to reference Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med 1998; 338: 916–7.PubMedCrossRef Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med 1998; 338: 916–7.PubMedCrossRef
24.
go back to reference Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42: 1757–63.PubMedCrossRef Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42: 1757–63.PubMedCrossRef
25.
go back to reference Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with coronary artery disease without diabetes mellitus. Am J Cardiol 2004; 94: 151–6.PubMedCrossRef Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with coronary artery disease without diabetes mellitus. Am J Cardiol 2004; 94: 151–6.PubMedCrossRef
26.
go back to reference Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24: 930–4.PubMedCrossRef Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24: 930–4.PubMedCrossRef
27.
go back to reference Sidhu JS, Cowan D, Tooze JA, et al. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. Am Heart J 2004; 147: e25.PubMedCrossRef Sidhu JS, Cowan D, Tooze JA, et al. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. Am Heart J 2004; 147: e25.PubMedCrossRef
28.
go back to reference Weissberg PL. Atherogenesis: current understanding of the causes of atheroma. Heart 2000; 83: 247–52.PubMedCrossRef Weissberg PL. Atherogenesis: current understanding of the causes of atheroma. Heart 2000; 83: 247–52.PubMedCrossRef
29.
go back to reference Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics. Circulation 1995; 91: 2488–96.PubMedCrossRef Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics. Circulation 1995; 91: 2488–96.PubMedCrossRef
30.
go back to reference Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990; 344: 254–7.PubMedCrossRef Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990; 344: 254–7.PubMedCrossRef
31.
go back to reference Davies MJ. Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 1998; 97: 2382–3.PubMedCrossRef Davies MJ. Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 1998; 97: 2382–3.PubMedCrossRef
32.
go back to reference Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992; 326: 310–8.PubMedCrossRef Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992; 326: 310–8.PubMedCrossRef
33.
go back to reference Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71.PubMedCrossRef Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71.PubMedCrossRef
34.
go back to reference Collins AJ, Levey AS, Sarnak MJ. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int 2005; 68: 766–72.PubMed Collins AJ, Levey AS, Sarnak MJ. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int 2005; 68: 766–72.PubMed
35.
go back to reference Folsom AR, Eckfeldt JH, Weitzman S, et al. Relation of carotid artery wall thickness to diabetes mellitus, fasting glucose and insulin, body size, and physical activity. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke 1994; 25: 66–73.PubMedCrossRef Folsom AR, Eckfeldt JH, Weitzman S, et al. Relation of carotid artery wall thickness to diabetes mellitus, fasting glucose and insulin, body size, and physical activity. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke 1994; 25: 66–73.PubMedCrossRef
36.
go back to reference Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. Circulation 1996; 93: 1809–17.PubMedCrossRef Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. Circulation 1996; 93: 1809–17.PubMedCrossRef
37.
go back to reference Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 2002; 106: 3143–421. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 2002; 106: 3143–421.
39.
go back to reference Rewers M, Zaccaro D, D’Agostino R, et al. Insulin sensitivity, insulinemia, and coronary artery disease: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2004; 27: 781–7.PubMedCrossRef Rewers M, Zaccaro D, D’Agostino R, et al. Insulin sensitivity, insulinemia, and coronary artery disease: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2004; 27: 781–7.PubMedCrossRef
40.
go back to reference Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999; 83: 25F–9F.PubMedCrossRef Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999; 83: 25F–9F.PubMedCrossRef
41.
go back to reference Montalescot G, Collet JP, Choussat R, et al. Fibrinogen as a risk factor for coronary heart disease. Eur Heart J 1998; 19 Suppl. H: H11–7.PubMed Montalescot G, Collet JP, Choussat R, et al. Fibrinogen as a risk factor for coronary heart disease. Eur Heart J 1998; 19 Suppl. H: H11–7.PubMed
42.
go back to reference Bern MM. Platelet functions in diabetes mellitus. Diabetes 1978; 27: 342–50.PubMed Bern MM. Platelet functions in diabetes mellitus. Diabetes 1978; 27: 342–50.PubMed
43.
go back to reference Vague P, Juhan-Vague I, Aillaud MF, et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 1986; 35: 250–3.PubMedCrossRef Vague P, Juhan-Vague I, Aillaud MF, et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 1986; 35: 250–3.PubMedCrossRef
44.
go back to reference Vinik AI, Erbas T, Park TS, et al. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24: 1476–85.PubMedCrossRef Vinik AI, Erbas T, Park TS, et al. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24: 1476–85.PubMedCrossRef
45.
go back to reference Juhan-Vague I, Thompson SG, Jespersen J. Involvement of the hemostatic system in the insulin resistance syndrome: a study of 1500 patients with angina pectoris. The ECAT Angina Pectoris Study Group. Arterioscler Thromb 1993; 13: 1865–73.PubMedCrossRef Juhan-Vague I, Thompson SG, Jespersen J. Involvement of the hemostatic system in the insulin resistance syndrome: a study of 1500 patients with angina pectoris. The ECAT Angina Pectoris Study Group. Arterioscler Thromb 1993; 13: 1865–73.PubMedCrossRef
46.
go back to reference Byberg L, Siegbahn A, Berglund L, et al. Plasminogen activator inhibitor-1 activity is independently related to both insulin sensitivity and serum triglycerides in 70-year-old men. Arterioscler Thromb Vasc Biol 1998; 18: 258–64.PubMedCrossRef Byberg L, Siegbahn A, Berglund L, et al. Plasminogen activator inhibitor-1 activity is independently related to both insulin sensitivity and serum triglycerides in 70-year-old men. Arterioscler Thromb Vasc Biol 1998; 18: 258–64.PubMedCrossRef
47.
go back to reference Festa A, D’Agostino R, Mykkanen L, et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance: the Insulin Resistance Atherosclerosis Study (IRAS). Arterioscler Thromb Vasc Biol 1999; 19: 562–8.PubMedCrossRef Festa A, D’Agostino R, Mykkanen L, et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance: the Insulin Resistance Atherosclerosis Study (IRAS). Arterioscler Thromb Vasc Biol 1999; 19: 562–8.PubMedCrossRef
48.
go back to reference Suzuki M, Takamisawa I, Suzuki K, et al. Close association of endothelial dysfunction with insulin resistance and carotid wall thickening in hypertension. Am J Hypertens 2004; 17: 228–32.PubMedCrossRef Suzuki M, Takamisawa I, Suzuki K, et al. Close association of endothelial dysfunction with insulin resistance and carotid wall thickening in hypertension. Am J Hypertens 2004; 17: 228–32.PubMedCrossRef
49.
go back to reference De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–74.PubMedCrossRef De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–74.PubMedCrossRef
50.
go back to reference Bluher M, Unger R, Rassoul F, et al. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or type II diabetes. Diabetologia 2002; 45: 210–6.PubMedCrossRef Bluher M, Unger R, Rassoul F, et al. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or type II diabetes. Diabetologia 2002; 45: 210–6.PubMedCrossRef
51.
go back to reference Watanabe Y, Sunayama S, Shimada K, et al. Troglitazone improves endothelial dysfunction in patients with insulin resistance. J Atheroscler Thromb 2000; 7: 159–63.PubMed Watanabe Y, Sunayama S, Shimada K, et al. Troglitazone improves endothelial dysfunction in patients with insulin resistance. J Atheroscler Thromb 2000; 7: 159–63.PubMed
52.
go back to reference Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–34.PubMedCrossRef Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–34.PubMedCrossRef
53.
go back to reference Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11: 212–7.PubMedCrossRef Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11: 212–7.PubMedCrossRef
54.
go back to reference Hotamisligil GS, Murray DL, Choy LN, et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994; 91: 4854–8.PubMedCrossRef Hotamisligil GS, Murray DL, Choy LN, et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994; 91: 4854–8.PubMedCrossRef
55.
go back to reference Perry C, Sattar N, Petrie J. Adipose tissue: passive sump or active pump? Br J Diabetes Vasc Dis 2001; 1: 110–4.CrossRef Perry C, Sattar N, Petrie J. Adipose tissue: passive sump or active pump? Br J Diabetes Vasc Dis 2001; 1: 110–4.CrossRef
56.
go back to reference Castrillo A, Diaz-Guerra MJ, Hortelano S, et al. Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 2000; 20: 1692–8.PubMedCrossRef Castrillo A, Diaz-Guerra MJ, Hortelano S, et al. Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 2000; 20: 1692–8.PubMedCrossRef
57.
go back to reference Takata Y, Kitami Y, Yang ZH, et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res 2002; 91: 427–33.PubMedCrossRef Takata Y, Kitami Y, Yang ZH, et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res 2002; 91: 427–33.PubMedCrossRef
58.
go back to reference Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85: 394–402.PubMedCrossRef Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85: 394–402.PubMedCrossRef
59.
go back to reference Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways: growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 1999; 274: 2672–81.PubMedCrossRef Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways: growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 1999; 274: 2672–81.PubMedCrossRef
60.
go back to reference Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79–82.PubMedCrossRef Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79–82.PubMedCrossRef
61.
go back to reference Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23: 52–7.PubMedCrossRef Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23: 52–7.PubMedCrossRef
62.
go back to reference Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric oxide synthase phosphorylation by prolonged treatment with troglitazone. J Biol Chem 2004; 279: 2499–506.PubMedCrossRef Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric oxide synthase phosphorylation by prolonged treatment with troglitazone. J Biol Chem 2004; 279: 2499–506.PubMedCrossRef
63.
go back to reference Stuhlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 2002; 287: 1420–6.PubMedCrossRef Stuhlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 2002; 287: 1420–6.PubMedCrossRef
64.
go back to reference Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARgamma on vascular endothelial function. Biochem Biophys Res Commun 1999; 254: 757–63.PubMedCrossRef Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARgamma on vascular endothelial function. Biochem Biophys Res Commun 1999; 254: 757–63.PubMedCrossRef
65.
go back to reference Salomone OA, Elliott PM, Calvino R, et al. Plasma immunoreactive endothelin concentration correlates with severity of coronary artery disease in patients with stable angina pectoris and normal ventricular function. J Am Coll Cardiol 1996; 28: 14–9.PubMedCrossRef Salomone OA, Elliott PM, Calvino R, et al. Plasma immunoreactive endothelin concentration correlates with severity of coronary artery disease in patients with stable angina pectoris and normal ventricular function. J Am Coll Cardiol 1996; 28: 14–9.PubMedCrossRef
66.
go back to reference Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6.PubMedCrossRef Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6.PubMedCrossRef
67.
go back to reference Azuma Y, Shinohara M, Wang PL, et al. 15-Deoxy-delta (12,14)-prostaglandin J(2) inhibits IL-10 and IL-12 production by macrophages. Biochem Biophys Res Commun 2001; 283: 344–6.PubMedCrossRef Azuma Y, Shinohara M, Wang PL, et al. 15-Deoxy-delta (12,14)-prostaglandin J(2) inhibits IL-10 and IL-12 production by macrophages. Biochem Biophys Res Commun 2001; 283: 344–6.PubMedCrossRef
68.
go back to reference Murao K, Imachi H, Momoi A, et al. Thiazolidinedione inhibits the production of monocyte chemoattractant protein-1 in cytokine-treated human vascular endothelial cells. FEBS Lett 1999; 454: 27–30.PubMedCrossRef Murao K, Imachi H, Momoi A, et al. Thiazolidinedione inhibits the production of monocyte chemoattractant protein-1 in cytokine-treated human vascular endothelial cells. FEBS Lett 1999; 454: 27–30.PubMedCrossRef
69.
go back to reference Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40: 687–93.PubMedCrossRef Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40: 687–93.PubMedCrossRef
70.
go back to reference Han KH, Quehenberger O. Ligands for peroxisome proliferator-activated receptor inhibit monocyte CCR2 expression stimulated by plasma lipoproteins. Trends Cardiovasc Med 2000; 10: 209–16.PubMedCrossRef Han KH, Quehenberger O. Ligands for peroxisome proliferator-activated receptor inhibit monocyte CCR2 expression stimulated by plasma lipoproteins. Trends Cardiovasc Med 2000; 10: 209–16.PubMedCrossRef
71.
go back to reference Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101: 235–8.PubMedCrossRef Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101: 235–8.PubMedCrossRef
72.
go back to reference Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273: 25573–80.PubMedCrossRef Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273: 25573–80.PubMedCrossRef
73.
go back to reference Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52.PubMedCrossRef Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52.PubMedCrossRef
74.
go back to reference Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229–40.PubMedCrossRef Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229–40.PubMedCrossRef
75.
go back to reference Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–8.PubMedCrossRef Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–8.PubMedCrossRef
76.
go back to reference Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCAl pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–71.PubMedCrossRef Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCAl pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–71.PubMedCrossRef
77.
go back to reference Moore KJ, Rosen ED, Fitzgerald M, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7: 41–7.PubMedCrossRef Moore KJ, Rosen ED, Fitzgerald M, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7: 41–7.PubMedCrossRef
78.
go back to reference Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999; 104: R25–31.PubMedCrossRef Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999; 104: R25–31.PubMedCrossRef
79.
go back to reference Gbaguidi FG, Chinetti G, Milosavljevic D, et al. Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Lett 2002; 512: 85–90.PubMedCrossRef Gbaguidi FG, Chinetti G, Milosavljevic D, et al. Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Lett 2002; 512: 85–90.PubMedCrossRef
80.
go back to reference Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36: 430–5.PubMedCrossRef Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36: 430–5.PubMedCrossRef
81.
go back to reference Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21: 796–9.PubMedCrossRef Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21: 796–9.PubMedCrossRef
82.
go back to reference Clark RB, Bishop-Bailey D, Estrada-Hernandez T, et al. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000; 164: 1364–71.PubMed Clark RB, Bishop-Bailey D, Estrada-Hernandez T, et al. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000; 164: 1364–71.PubMed
83.
go back to reference Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98: 1897–905.PubMedCrossRef Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98: 1897–905.PubMedCrossRef
84.
go back to reference Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1-> S transition in vascular smooth muscle cells. J Biol Chem 2000; 275: 22435–41.PubMedCrossRef Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1-> S transition in vascular smooth muscle cells. J Biol Chem 2000; 275: 22435–41.PubMedCrossRef
85.
go back to reference Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology 2001; 142: 3125–34.PubMedCrossRef Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology 2001; 142: 3125–34.PubMedCrossRef
86.
go back to reference Takeda K, Ichiki T, Tokunou T, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000; 102: 1834–9.PubMedCrossRef Takeda K, Ichiki T, Tokunou T, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000; 102: 1834–9.PubMedCrossRef
87.
go back to reference Griendling KK, Ushio-Fukai M, Lassegue B, et al. Angiotensin II signaling in vascular smooth muscle: new concepts. Hypertension 1997; 29: 366–73.PubMedCrossRef Griendling KK, Ushio-Fukai M, Lassegue B, et al. Angiotensin II signaling in vascular smooth muscle: new concepts. Hypertension 1997; 29: 366–73.PubMedCrossRef
88.
go back to reference Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPARgamma. J Biol Chem 2000; 275: 28028–32.PubMed Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPARgamma. J Biol Chem 2000; 275: 28028–32.PubMed
89.
go back to reference Baker CS, Hall RJ, Evans TJ, et al. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999; 19: 646–55.PubMedCrossRef Baker CS, Hall RJ, Evans TJ, et al. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999; 19: 646–55.PubMedCrossRef
90.
go back to reference Burleigh ME, Babaev VR, Oates JA, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002; 105: 1816–23.PubMedCrossRef Burleigh ME, Babaev VR, Oates JA, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002; 105: 1816–23.PubMedCrossRef
91.
go back to reference Ikeda Y, Sugawara A, Taniyama Y, et al. Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2. J Biol Chem 2000; 275: 33142–50.PubMedCrossRef Ikeda Y, Sugawara A, Taniyama Y, et al. Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2. J Biol Chem 2000; 275: 33142–50.PubMedCrossRef
92.
go back to reference Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 1975; 72: 2994–8.PubMedCrossRef Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 1975; 72: 2994–8.PubMedCrossRef
93.
go back to reference Sugawara A, Takeuchi K, Uruno A, et al. Differential effects among thiazolidinediones on the transcription of thromboxane receptor and angiotensin II type 1 receptor genes. Hypertens Res 2001; 24: 229–33.PubMedCrossRef Sugawara A, Takeuchi K, Uruno A, et al. Differential effects among thiazolidinediones on the transcription of thromboxane receptor and angiotensin II type 1 receptor genes. Hypertens Res 2001; 24: 229–33.PubMedCrossRef
94.
go back to reference Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARgamma in endothelial function. Biochem Biophys Res Commun 1999; 258: 431–5.PubMedCrossRef Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARgamma in endothelial function. Biochem Biophys Res Commun 1999; 258: 431–5.PubMedCrossRef
95.
go back to reference Zirlik A, Leugers A, Lohrmann J, et al. Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones. Thromb Haemost 2004; 91: 674–82.PubMed Zirlik A, Leugers A, Lohrmann J, et al. Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones. Thromb Haemost 2004; 91: 674–82.PubMed
96.
go back to reference He G, Pedersen SB, Bruun JM, et al. Differences in plasminogen activator inhibitor 1 in subcutaneous versus omental adipose tissue in non-obese and obese subjects. Horm Metab Res 2003; 35: 178–82.PubMedCrossRef He G, Pedersen SB, Bruun JM, et al. Differences in plasminogen activator inhibitor 1 in subcutaneous versus omental adipose tissue in non-obese and obese subjects. Horm Metab Res 2003; 35: 178–82.PubMedCrossRef
97.
go back to reference Pfützner A, Marx N, Lübben G, et al. Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control results from the pioneer study. J Am Coll Cardiol 2005; 45: 1925–31.PubMedCrossRef Pfützner A, Marx N, Lübben G, et al. Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control results from the pioneer study. J Am Coll Cardiol 2005; 45: 1925–31.PubMedCrossRef
98.
go back to reference Osman A, Otero J, Brizolara A, et al. Effect of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes. Am Heart J 2004; 147: e23.PubMedCrossRef Osman A, Otero J, Brizolara A, et al. Effect of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes. Am Heart J 2004; 147: e23.PubMedCrossRef
99.
go back to reference Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 2004; 107: 343–54.CrossRef Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 2004; 107: 343–54.CrossRef
100.
go back to reference Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 1988; 141: 2629–34.PubMed Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 1988; 141: 2629–34.PubMed
101.
go back to reference Chen K, Vita JA, Berk BC, et al. c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem 2001; 276: 16045–50.PubMedCrossRef Chen K, Vita JA, Berk BC, et al. c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem 2001; 276: 16045–50.PubMedCrossRef
102.
go back to reference Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28: 1024–31.PubMedCrossRef Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28: 1024–31.PubMedCrossRef
103.
go back to reference Martens FM, Visseren FL, de Koning EJ, et al. Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol 2005; 46: 773–8.PubMedCrossRef Martens FM, Visseren FL, de Koning EJ, et al. Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol 2005; 46: 773–8.PubMedCrossRef
104.
go back to reference Caballero AE, Saouaf R, Lim SC, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 2003 Feb; 52(2): 173–80.PubMedCrossRef Caballero AE, Saouaf R, Lim SC, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 2003 Feb; 52(2): 173–80.PubMedCrossRef
105.
go back to reference Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818–20.PubMedCrossRef Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818–20.PubMedCrossRef
106.
go back to reference Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 3452–6.PubMedCrossRef Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 3452–6.PubMedCrossRef
107.
go back to reference Mizushige K, Noma T, Yao L, et al. Effects of troglitazone on collagen accumulation and distensibility of aortic wall in prestage of non-insulin-dependent diabetes mellitus of Otsuka Long-Evans Tokushima Fatty rats. J Cardiovasc Pharmacol 2000; 35: 150–5.PubMedCrossRef Mizushige K, Noma T, Yao L, et al. Effects of troglitazone on collagen accumulation and distensibility of aortic wall in prestage of non-insulin-dependent diabetes mellitus of Otsuka Long-Evans Tokushima Fatty rats. J Cardiovasc Pharmacol 2000; 35: 150–5.PubMedCrossRef
108.
go back to reference Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus. J Am Coll Cardiol 2000; 36: 1529–35.PubMedCrossRef Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus. J Am Coll Cardiol 2000; 36: 1529–35.PubMedCrossRef
109.
go back to reference Takagi T, Yamamuro A, Tamita K, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003; 146: E5.PubMedCrossRef Takagi T, Yamamuro A, Tamita K, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003; 146: E5.PubMedCrossRef
110.
go back to reference Choi D, Kim SK, Choi SH, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004; 27: 2654–60.PubMedCrossRef Choi D, Kim SK, Choi SH, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004; 27: 2654–60.PubMedCrossRef
111.
go back to reference Aljada A, Garg R, Ghanim H, et al. Nuclear factor-kappa B suppressive and inhibitor-kappa B stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an anti-inflammatory action? J Clin Endocrinol Metab 2001; 86: 3250–6.PubMedCrossRef Aljada A, Garg R, Ghanim H, et al. Nuclear factor-kappa B suppressive and inhibitor-kappa B stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an anti-inflammatory action? J Clin Endocrinol Metab 2001; 86: 3250–6.PubMedCrossRef
112.
go back to reference Cominacini L, Garbin U, Fratta Pasini A, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47: 130–3.PubMedCrossRef Cominacini L, Garbin U, Fratta Pasini A, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47: 130–3.PubMedCrossRef
113.
go back to reference Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679–84.PubMedCrossRef Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679–84.PubMedCrossRef
114.
go back to reference Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89: 2728–35.PubMedCrossRef Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89: 2728–35.PubMedCrossRef
115.
go back to reference Osende JI, Badimon JJ, Fuster V, et al. Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control. J Am Coll Cardiol 2001; 38: 1307–12.PubMedCrossRef Osende JI, Badimon JJ, Fuster V, et al. Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control. J Am Coll Cardiol 2001; 38: 1307–12.PubMedCrossRef
116.
go back to reference Lawrence JM, Reid J, Taylor GJ, et al. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Diabetes Care 2004; 27: 41–6.PubMedCrossRef Lawrence JM, Reid J, Taylor GJ, et al. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Diabetes Care 2004; 27: 41–6.PubMedCrossRef
117.
go back to reference Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129: 162–3.PubMed Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129: 162–3.PubMed
118.
go back to reference Florkowski CM. Management of co-existing diabetes mellitus and dyslipidemia: defining the role of thiazolidinediones. Am J Cardiovasc Drugs 2002; 2: 15–21.PubMedCrossRef Florkowski CM. Management of co-existing diabetes mellitus and dyslipidemia: defining the role of thiazolidinediones. Am J Cardiovasc Drugs 2002; 2: 15–21.PubMedCrossRef
119.
go back to reference Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemie control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Pioglitazone 026 Study Group. Coron Artery Dis 2001; 12: 413–23.PubMedCrossRef Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemie control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Pioglitazone 026 Study Group. Coron Artery Dis 2001; 12: 413–23.PubMedCrossRef
120.
go back to reference Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8: 316–20.PubMedCrossRef Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8: 316–20.PubMedCrossRef
121.
go back to reference Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89.
122.
go back to reference Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86: 1306–12.PubMedCrossRef Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86: 1306–12.PubMedCrossRef
123.
go back to reference Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–9.PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–9.PubMedCrossRef
124.
go back to reference Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol 2005; 9: 1804–9.CrossRef Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol 2005; 9: 1804–9.CrossRef
125.
go back to reference Ishiwata S, Tukada T, Nakanishi S, et al. Postangioplasty restenosis: platelet activation and the coagulation-fibrinolysis system as possible factors in the pathogenesis of restenosis. Am Heart J 1997; 133: 387–92.PubMedCrossRef Ishiwata S, Tukada T, Nakanishi S, et al. Postangioplasty restenosis: platelet activation and the coagulation-fibrinolysis system as possible factors in the pathogenesis of restenosis. Am Heart J 1997; 133: 387–92.PubMedCrossRef
126.
go back to reference Akbiyik F, Ray DM, Gettings KF, et al. Human bone marrow megakaryocytes and platelets express PPARγ, and PPARγ agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104: 1361–8.PubMedCrossRef Akbiyik F, Ray DM, Gettings KF, et al. Human bone marrow megakaryocytes and platelets express PPARγ, and PPARγ agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104: 1361–8.PubMedCrossRef
127.
go back to reference Ishizuka T, Itaya S, Wada H, et al. Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism. Diabetes 1998; 47: 1494–500.PubMedCrossRef Ishizuka T, Itaya S, Wada H, et al. Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism. Diabetes 1998; 47: 1494–500.PubMedCrossRef
128.
go back to reference Li D, Chen K, Sinha N, et al. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc Res 2005; 65: 907–12.PubMedCrossRef Li D, Chen K, Sinha N, et al. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc Res 2005; 65: 907–12.PubMedCrossRef
129.
go back to reference Michelson AD, Furman MI. Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol 1999; 6: 342–8.PubMedCrossRef Michelson AD, Furman MI. Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol 1999; 6: 342–8.PubMedCrossRef
130.
go back to reference Baldassarre D, Veglia F, Gobbi C, et al. Intima-media thickness after pravastatin stabilizes also in patients with moderate to no reduction in LDL-cholesterol levels: the carotid atherosclerosis Italian ultrasound study. Atherosclerosis 2000; 151: 575–83.PubMedCrossRef Baldassarre D, Veglia F, Gobbi C, et al. Intima-media thickness after pravastatin stabilizes also in patients with moderate to no reduction in LDL-cholesterol levels: the carotid atherosclerosis Italian ultrasound study. Atherosclerosis 2000; 151: 575–83.PubMedCrossRef
131.
go back to reference Wiklund O, Hulthe J, Wikstrand J, et al. Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke 2002; 33: 572–7.PubMedCrossRef Wiklund O, Hulthe J, Wikstrand J, et al. Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke 2002; 33: 572–7.PubMedCrossRef
132.
go back to reference Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25: 815–21.PubMedCrossRef Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25: 815–21.PubMedCrossRef
134.
go back to reference Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 2003; 108: 2941–8.PubMedCrossRef Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 2003; 108: 2941–8.PubMedCrossRef
135.
136.
go back to reference St John Sutton M, Rendell M, Dandona P, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002; 25: 2058–64.CrossRef St John Sutton M, Rendell M, Dandona P, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002; 25: 2058–64.CrossRef
Metadata
Title
Peroxisome Proliferator-Activated Receptor-γ Agonists for Management and Prevention of Vascular Disease in Patients with and without Diabetes Mellitus
Authors
Ramón Ríos-Vázquez
Raquel Marzoa-Rivas
Ignacio Gil-Ortega
Professor Juan Carlos Kaski
Publication date
01-07-2006
Publisher
Springer International Publishing
Published in
American Journal of Cardiovascular Drugs / Issue 4/2006
Print ISSN: 1175-3277
Electronic ISSN: 1179-187X
DOI
https://doi.org/10.2165/00129784-200606040-00003

Other articles of this Issue 4/2006

American Journal of Cardiovascular Drugs 4/2006 Go to the issue

Adis Drug Evaluation

Reteplase