Skip to main content
Top
Published in: European Journal of Trauma and Emergency Surgery 3/2021

Open Access 01-06-2021 | Periprosthetic Fracture | Original Article

Increased risk for postoperative periprosthetic fracture in hip fracture patients with the Exeter stem than the anatomic SP2 Lubinus stem

Authors: Carl Mellner, Jabbar Mohammed, Magnus Larsson, Sandra Esberg, Maciej Szymanski, Nils Hellström, Cecilia Chang, Hans E. Berg, Olof Sköldenberg, Björn Knutsson, Per Morberg, Sebastian Mukka

Published in: European Journal of Trauma and Emergency Surgery | Issue 3/2021

Login to get access

Abstract

Background

The purpose of this study was to compare the cumulative incidence of postoperative periprosthetic fracture (PPF) in a cohort of femoral neck fracture (FNF) patients treated with two commonly used cemented stems: either a collarless, polished, tapered Exeter stem or the anatomic Lubinus SP2 stem.

Methods

In this retrospective multicenter cohort study of a consecutive series of patients, we included 2528 patients of age 60 years and above with an FNF who were treated with either hemiarthroplasty or total hip arthroplasty using either a polished tapered Exeter stem or an anatomic Lubinus SP2 stem. The incidence of PPF was assessed at a minimum of 2 years postoperatively.

Results

The incidence of PPF was assessed at a median follow-up of 47 months postoperatively. Thirty nine patients (1.5%) sustained a PPF at a median of 27 months (range 0–96 months) postoperatively. Two of the operatively treated fractures were Vancouver A (5%), 7 were Vancouver B1 (18%), 10 were Vancouver B2 (26%), 7 were Vancouver B3 (18%), and 13 were Vancouver C (32%). The cumulative incidence of PPF was 2.3% in the Exeter group compared with 0.7% in the SP2 group (p < 0.001). The HR was 5.4 (95% CI 2.4–12.5, p < 0.001), using the SP2 group as the denominator.

Conclusions

The Exeter stem was associated with a higher risk for PPF than the Lubinus SP2 stem. We suggest that the tapered Exeter stem should be used with caution in the treatment of FNF.

Trial registration

The study was registered at clinicaltrials.gov (identifier: NCT03326271).
Literature
1.
go back to reference Lindahl H, Oden A, Garellick G, Malchau H. The excess mortality due to periprosthetic femur fracture A study from the Swedish national hip arthroplasty register. Bone. 2007;40:1294–8.CrossRef Lindahl H, Oden A, Garellick G, Malchau H. The excess mortality due to periprosthetic femur fracture A study from the Swedish national hip arthroplasty register. Bone. 2007;40:1294–8.CrossRef
2.
go back to reference Shields E, Behrend C, Bair J, Cram P, Kates S. Mortality and financial burden of periprosthetic fractures of the femur. Geriatr Orthop Surg Rehabil. 2014;5:147–53.CrossRef Shields E, Behrend C, Bair J, Cram P, Kates S. Mortality and financial burden of periprosthetic fractures of the femur. Geriatr Orthop Surg Rehabil. 2014;5:147–53.CrossRef
3.
go back to reference Mellner C, Eisler T, Borsbo J, Broden C, Morberg P, Mukka S. The Sernbo score predicts 1-year mortality after displaced femoral neck fractures treated with a hip arthroplasty. Acta Orthop. 2017;88:402–6.CrossRef Mellner C, Eisler T, Borsbo J, Broden C, Morberg P, Mukka S. The Sernbo score predicts 1-year mortality after displaced femoral neck fractures treated with a hip arthroplasty. Acta Orthop. 2017;88:402–6.CrossRef
5.
go back to reference Gitajn IL, Heng M, Weaver MJ, Casemyr N, May C, Vrahas MS, Harris MB. Mortality following surgical management of Vancouver B periprosthetic fractures. J Orthop Trauma. 2017;31:9–14.CrossRef Gitajn IL, Heng M, Weaver MJ, Casemyr N, May C, Vrahas MS, Harris MB. Mortality following surgical management of Vancouver B periprosthetic fractures. J Orthop Trauma. 2017;31:9–14.CrossRef
6.
go back to reference Märdian S, Perka C, Schaser KD, Gruner J, Scheel F, Schwabe P. Cardiac disease and advanced age increase the mortality risk following surgery for periprosthetic femoral fractures. Bone Jt J. 2017;99:921–6.CrossRef Märdian S, Perka C, Schaser KD, Gruner J, Scheel F, Schwabe P. Cardiac disease and advanced age increase the mortality risk following surgery for periprosthetic femoral fractures. Bone Jt J. 2017;99:921–6.CrossRef
7.
go back to reference Berend ME, Smith A, Meding JB, Ritter MA, Lynch T, Davis K. Long-term outcome and risk factors of proximal femoral fracture in uncemented and cemented total hip arthroplasty in 2551 hips. J Arthroplasty. 2006;21:53–9.CrossRef Berend ME, Smith A, Meding JB, Ritter MA, Lynch T, Davis K. Long-term outcome and risk factors of proximal femoral fracture in uncemented and cemented total hip arthroplasty in 2551 hips. J Arthroplasty. 2006;21:53–9.CrossRef
8.
go back to reference Sidler-Maier CC, Waddell JP. Incidence and predisposing factors of periprosthetic proximal femoral fractures: a literature review. Int Orthop. 2015;39:1673–82.CrossRef Sidler-Maier CC, Waddell JP. Incidence and predisposing factors of periprosthetic proximal femoral fractures: a literature review. Int Orthop. 2015;39:1673–82.CrossRef
9.
go back to reference Rogmark C, Leonardsson O. Hip arthroplasty for the treatment of displaced fractures of the femoral neck in elderly patients. Bone Jt J. 2016;98:291–7.CrossRef Rogmark C, Leonardsson O. Hip arthroplasty for the treatment of displaced fractures of the femoral neck in elderly patients. Bone Jt J. 2016;98:291–7.CrossRef
10.
go back to reference Brodén C, Mukka S, Muren O, Eisler T, Boden H, Stark A, Sköldenberg O. High risk of early periprosthetic fractures after primary hip arthroplasty in elderly patients using a cemented, tapered, polished stem. Acta Orthop. 2015;86:169–74.CrossRef Brodén C, Mukka S, Muren O, Eisler T, Boden H, Stark A, Sköldenberg O. High risk of early periprosthetic fractures after primary hip arthroplasty in elderly patients using a cemented, tapered, polished stem. Acta Orthop. 2015;86:169–74.CrossRef
11.
go back to reference Lindahl H, Malchau H, Herberts P, Garellick G. Periprosthetic femoral fractures classification and demographics of 1049 periprosthetic femoral fractures from the Swedish national hip arthroplasty register. J Arthroplasty. 2005;20:857–65.CrossRef Lindahl H, Malchau H, Herberts P, Garellick G. Periprosthetic femoral fractures classification and demographics of 1049 periprosthetic femoral fractures from the Swedish national hip arthroplasty register. J Arthroplasty. 2005;20:857–65.CrossRef
12.
go back to reference Lindahl H, Malchau H, Oden A, Garellick G. Risk factors for failure after treatment of a periprosthetic fracture of the femur. J Bone Jt Surg Br. 2006;88:26–30.CrossRef Lindahl H, Malchau H, Oden A, Garellick G. Risk factors for failure after treatment of a periprosthetic fracture of the femur. J Bone Jt Surg Br. 2006;88:26–30.CrossRef
13.
go back to reference Garellick G, Karrholm J, Lindahl H, Malchau H, Rogmark C, Rolfson O. The Swedish hip arthroplasty register annual report 2014. Sweden: 2015. Garellick G, Karrholm J, Lindahl H, Malchau H, Rogmark C, Rolfson O. The Swedish hip arthroplasty register annual report 2014. Sweden: 2015.
14.
go back to reference Inngul C, Enocson A. Postoperative periprosthetic fractures in patients with an exeter stem due to a femoral neck fracture: cumulative incidence and surgical outcome. Int Orthop. 2015;39:1683–8.CrossRef Inngul C, Enocson A. Postoperative periprosthetic fractures in patients with an exeter stem due to a femoral neck fracture: cumulative incidence and surgical outcome. Int Orthop. 2015;39:1683–8.CrossRef
15.
go back to reference Mukka S, Mellner C, Knutsson B, Sayed-Noor A, Skoldenberg O. Substantially higher prevalence of postoperative peri-prosthetic fractures in octogenarians with hip fractures operated with a cemented, polished tapered stem rather than an anatomic stem. Acta Orthop. 2016;87:257–61.CrossRef Mukka S, Mellner C, Knutsson B, Sayed-Noor A, Skoldenberg O. Substantially higher prevalence of postoperative peri-prosthetic fractures in octogenarians with hip fractures operated with a cemented, polished tapered stem rather than an anatomic stem. Acta Orthop. 2016;87:257–61.CrossRef
17.
go back to reference Brady OH, Garbuz DS, Masri BA, Duncan CP. The reliability and validity of the Vancouver classification of femoral fractures after hip replacement. J Arthroplasty. 2000;15:59–62.CrossRef Brady OH, Garbuz DS, Masri BA, Duncan CP. The reliability and validity of the Vancouver classification of femoral fractures after hip replacement. J Arthroplasty. 2000;15:59–62.CrossRef
18.
go back to reference Carli AV, Negus JJ, Haddad FS. Periprosthetic femoral fractures and trying to avoid them: what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture? Bone Jt J. 2017;99:50–9.CrossRef Carli AV, Negus JJ, Haddad FS. Periprosthetic femoral fractures and trying to avoid them: what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture? Bone Jt J. 2017;99:50–9.CrossRef
19.
go back to reference Bhattacharyya T, Chang D, Meigs JB, Estok DM 2nd, Malchau H. Mortality after periprosthetic fracture of the femur. J Bone Jt Surg Am. 2007;89:2658–62.CrossRef Bhattacharyya T, Chang D, Meigs JB, Estok DM 2nd, Malchau H. Mortality after periprosthetic fracture of the femur. J Bone Jt Surg Am. 2007;89:2658–62.CrossRef
20.
go back to reference Sarvilinna R, Huhtala HS, Sovelius RT, Halonen PJ, Nevalainen JK, Pajamaki KJ. Factors predisposing to periprosthetic fracture after hip arthroplasty: a case (n = 31)-control study. Acta Orthop Scand. 2004;75:16–20.CrossRef Sarvilinna R, Huhtala HS, Sovelius RT, Halonen PJ, Nevalainen JK, Pajamaki KJ. Factors predisposing to periprosthetic fracture after hip arthroplasty: a case (n = 31)-control study. Acta Orthop Scand. 2004;75:16–20.CrossRef
21.
go back to reference Franklin J, Malchau H. Risk factors for periprosthetic femoral fracture. Injury. 2007;38:655–60.CrossRef Franklin J, Malchau H. Risk factors for periprosthetic femoral fracture. Injury. 2007;38:655–60.CrossRef
22.
go back to reference Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM. Risk factors for periprosthetic fractures of the hip: a survivorship analysis. Clin Orthop Relat Res. 2008;466:1652–6.CrossRef Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM. Risk factors for periprosthetic fractures of the hip: a survivorship analysis. Clin Orthop Relat Res. 2008;466:1652–6.CrossRef
23.
go back to reference Thien TM, Chatziagorou G, Garellick G, Furnes O, Havelin LI, Makela K, et al. Periprosthetic femoral fracture within two years after total hip replacement: analysis of 437,629 operations in the nordic arthroplasty register association database. J Bone Jt Surg Am. 2014;96:e167.CrossRef Thien TM, Chatziagorou G, Garellick G, Furnes O, Havelin LI, Makela K, et al. Periprosthetic femoral fracture within two years after total hip replacement: analysis of 437,629 operations in the nordic arthroplasty register association database. J Bone Jt Surg Am. 2014;96:e167.CrossRef
24.
go back to reference Raut S, Parker MJ. Medium to long term follow up of a consecutive series of 604 Exeter Trauma Stem Hemiarthroplasties (ETS) for the treatment of displaced intracapsular femoral neck fractures. Injury. 2016;47:721–4.CrossRef Raut S, Parker MJ. Medium to long term follow up of a consecutive series of 604 Exeter Trauma Stem Hemiarthroplasties (ETS) for the treatment of displaced intracapsular femoral neck fractures. Injury. 2016;47:721–4.CrossRef
25.
go back to reference Palan J, Smith MC, Gregg P, Mellon S, Kulkarni A, Tucker K, et al. The influence of cemented femoral stem choice on the incidence of revision for periprosthetic fracture after primary total hip arthroplasty: an analysis of national joint registry data. Bone Jt J. 2016;98:1347–54.CrossRef Palan J, Smith MC, Gregg P, Mellon S, Kulkarni A, Tucker K, et al. The influence of cemented femoral stem choice on the incidence of revision for periprosthetic fracture after primary total hip arthroplasty: an analysis of national joint registry data. Bone Jt J. 2016;98:1347–54.CrossRef
26.
go back to reference Macpherson GJ, Hank C, Schneider M, Trayner M, Elton R, Howie CR, et al. The posterior approach reduces the risk of thin cement mantles with a straight femoral stem design. Acta Orthop. 2010;81:292–5.CrossRef Macpherson GJ, Hank C, Schneider M, Trayner M, Elton R, Howie CR, et al. The posterior approach reduces the risk of thin cement mantles with a straight femoral stem design. Acta Orthop. 2010;81:292–5.CrossRef
29.
go back to reference Breusch SJ, Lukoschek M, Kreutzer J, Brocai D, Gruen TA. Dependency of cement mantle thickness on femoral stem design and centralizer. J Arthroplasty. 2001;16:648–57.CrossRef Breusch SJ, Lukoschek M, Kreutzer J, Brocai D, Gruen TA. Dependency of cement mantle thickness on femoral stem design and centralizer. J Arthroplasty. 2001;16:648–57.CrossRef
30.
go back to reference Ricci WM. Periprosthetic femur fractures. J Orthop Trauma. 2015;29:130–7.CrossRef Ricci WM. Periprosthetic femur fractures. J Orthop Trauma. 2015;29:130–7.CrossRef
31.
go back to reference Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20:1633–50.CrossRef Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20:1633–50.CrossRef
32.
go back to reference Soderqvist A, Ekstrom W, Ponzer S, Pettersson H, Cederholm T, Dalen N, et al. Prediction of mortality in elderly patients with hip fractures: a two-year prospective study of 1,944 patients. Gerontology. 2009;55:496–504.CrossRef Soderqvist A, Ekstrom W, Ponzer S, Pettersson H, Cederholm T, Dalen N, et al. Prediction of mortality in elderly patients with hip fractures: a two-year prospective study of 1,944 patients. Gerontology. 2009;55:496–504.CrossRef
33.
go back to reference Stewart NA, Chantrey J, Blankley SJ, Boulton C, Moran CG. Predictors of 5 year survival following hip fracture. Injury. 2011;42:1253–6.CrossRef Stewart NA, Chantrey J, Blankley SJ, Boulton C, Moran CG. Predictors of 5 year survival following hip fracture. Injury. 2011;42:1253–6.CrossRef
34.
go back to reference Drew JM, Griffin WL, Odum SM, Van Doren B, Weston BT, Stryker LS. Survivorship after periprosthetic femur fracture: factors affecting outcome. J Arthroplasty. 2016;31:1283–8.CrossRef Drew JM, Griffin WL, Odum SM, Van Doren B, Weston BT, Stryker LS. Survivorship after periprosthetic femur fracture: factors affecting outcome. J Arthroplasty. 2016;31:1283–8.CrossRef
35.
go back to reference Boylan MR, Riesgo AM, Paulino CB, Slover JD, Zuckerman JD, Egol KA. Mortality following periprosthetic proximal femoral fractures versus native hip fractures. J Bone Jt Surg Am. 2018;100:578–85.CrossRef Boylan MR, Riesgo AM, Paulino CB, Slover JD, Zuckerman JD, Egol KA. Mortality following periprosthetic proximal femoral fractures versus native hip fractures. J Bone Jt Surg Am. 2018;100:578–85.CrossRef
36.
go back to reference Klein GR, Parvizi J, Rapuri V, Wolf CF, Hozack WJ, Sharkey PF, et al. Proximal femoral replacement for the treatment of periprosthetic fractures. J Bone Jt Surg Am. 2005;87:1777–811. Klein GR, Parvizi J, Rapuri V, Wolf CF, Hozack WJ, Sharkey PF, et al. Proximal femoral replacement for the treatment of periprosthetic fractures. J Bone Jt Surg Am. 2005;87:1777–811.
Metadata
Title
Increased risk for postoperative periprosthetic fracture in hip fracture patients with the Exeter stem than the anatomic SP2 Lubinus stem
Authors
Carl Mellner
Jabbar Mohammed
Magnus Larsson
Sandra Esberg
Maciej Szymanski
Nils Hellström
Cecilia Chang
Hans E. Berg
Olof Sköldenberg
Björn Knutsson
Per Morberg
Sebastian Mukka
Publication date
01-06-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Trauma and Emergency Surgery / Issue 3/2021
Print ISSN: 1863-9933
Electronic ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-019-01263-6

Other articles of this Issue 3/2021

European Journal of Trauma and Emergency Surgery 3/2021 Go to the issue